Time-Series Trend of Pandemic SARS-CoV-2 Variants Visualized Using Batch-Learning Self-Organizing Map for Oligonucleotide Compositions

To confront the global threat of coronavirus disease 2019, a massive number of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences have been decoded, with the results promptly released through the GISAID database. Based on variant types, eight clades have already been d...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Takashi Abe [verfasserIn]

Ryuki Furukawa [verfasserIn]

Yuki Iwasaki [verfasserIn]

Toshimichi Ikemura [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

covid-19

sars-cov-2

oligonucleotide composition

batch-learning self-organizing map (blsom)

unsupervised explainable machine learning

time-series trend

Übergeordnetes Werk:

In: Data Science Journal - Ubiquity Press, 2009, 20(2021), 1

Übergeordnetes Werk:

volume:20 ; year:2021 ; number:1

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.5334/dsj-2021-029

Katalog-ID:

DOAJ070326517

Nicht das Richtige dabei?

Schreiben Sie uns!