Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data
The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduc...
Ausführliche Beschreibung
Autor*in: |
Segata Nicola [verfasserIn] Blanzieri Enrico [verfasserIn] Priami Corrado [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Übergeordnetes Werk: |
In: Journal of Integrative Bioinformatics - De Gruyter, 2018, 5(2008), 1, Seite 57-71 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2008 ; number:1 ; pages:57-71 |
Links: |
---|
DOI / URN: |
10.1515/jib-2008-87 |
---|
Katalog-ID: |
DOAJ07075327X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07075327X | ||
003 | DE-627 | ||
005 | 20230309094348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2008 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/jib-2008-87 |2 doi | |
035 | |a (DE-627)DOAJ07075327X | ||
035 | |a (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
100 | 0 | |a Segata Nicola |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. | ||
653 | 0 | |a Biotechnology | |
700 | 0 | |a Blanzieri Enrico |e verfasserin |4 aut | |
700 | 0 | |a Priami Corrado |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Integrative Bioinformatics |d De Gruyter, 2018 |g 5(2008), 1, Seite 57-71 |w (DE-627)388546603 |w (DE-600)2147212-9 |x 16134516 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2008 |g number:1 |g pages:57-71 |
856 | 4 | 0 | |u https://doi.org/10.1515/jib-2008-87 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 |z kostenfrei |
856 | 4 | 0 | |u http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1613-4516 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2008 |e 1 |h 57-71 |
author_variant |
s n sn b e be p c pc |
---|---|
matchkey_str |
article:16134516:2008----::oadtenertoocmuainlytmbooynhgtruhudtspotndfeetaaa |
hierarchy_sort_str |
2008 |
callnumber-subject-code |
TP |
publishDate |
2008 |
allfields |
10.1515/jib-2008-87 doi (DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Segata Nicola verfasserin aut Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. Biotechnology Blanzieri Enrico verfasserin aut Priami Corrado verfasserin aut In Journal of Integrative Bioinformatics De Gruyter, 2018 5(2008), 1, Seite 57-71 (DE-627)388546603 (DE-600)2147212-9 16134516 nnns volume:5 year:2008 number:1 pages:57-71 https://doi.org/10.1515/jib-2008-87 kostenfrei https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 kostenfrei http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT kostenfrei https://doaj.org/toc/1613-4516 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2008 1 57-71 |
spelling |
10.1515/jib-2008-87 doi (DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Segata Nicola verfasserin aut Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. Biotechnology Blanzieri Enrico verfasserin aut Priami Corrado verfasserin aut In Journal of Integrative Bioinformatics De Gruyter, 2018 5(2008), 1, Seite 57-71 (DE-627)388546603 (DE-600)2147212-9 16134516 nnns volume:5 year:2008 number:1 pages:57-71 https://doi.org/10.1515/jib-2008-87 kostenfrei https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 kostenfrei http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT kostenfrei https://doaj.org/toc/1613-4516 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2008 1 57-71 |
allfields_unstemmed |
10.1515/jib-2008-87 doi (DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Segata Nicola verfasserin aut Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. Biotechnology Blanzieri Enrico verfasserin aut Priami Corrado verfasserin aut In Journal of Integrative Bioinformatics De Gruyter, 2018 5(2008), 1, Seite 57-71 (DE-627)388546603 (DE-600)2147212-9 16134516 nnns volume:5 year:2008 number:1 pages:57-71 https://doi.org/10.1515/jib-2008-87 kostenfrei https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 kostenfrei http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT kostenfrei https://doaj.org/toc/1613-4516 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2008 1 57-71 |
allfieldsGer |
10.1515/jib-2008-87 doi (DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Segata Nicola verfasserin aut Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. Biotechnology Blanzieri Enrico verfasserin aut Priami Corrado verfasserin aut In Journal of Integrative Bioinformatics De Gruyter, 2018 5(2008), 1, Seite 57-71 (DE-627)388546603 (DE-600)2147212-9 16134516 nnns volume:5 year:2008 number:1 pages:57-71 https://doi.org/10.1515/jib-2008-87 kostenfrei https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 kostenfrei http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT kostenfrei https://doaj.org/toc/1613-4516 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2008 1 57-71 |
allfieldsSound |
10.1515/jib-2008-87 doi (DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 DE-627 ger DE-627 rakwb eng TP248.13-248.65 Segata Nicola verfasserin aut Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. Biotechnology Blanzieri Enrico verfasserin aut Priami Corrado verfasserin aut In Journal of Integrative Bioinformatics De Gruyter, 2018 5(2008), 1, Seite 57-71 (DE-627)388546603 (DE-600)2147212-9 16134516 nnns volume:5 year:2008 number:1 pages:57-71 https://doi.org/10.1515/jib-2008-87 kostenfrei https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 kostenfrei http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT kostenfrei https://doaj.org/toc/1613-4516 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2008 1 57-71 |
language |
English |
source |
In Journal of Integrative Bioinformatics 5(2008), 1, Seite 57-71 volume:5 year:2008 number:1 pages:57-71 |
sourceStr |
In Journal of Integrative Bioinformatics 5(2008), 1, Seite 57-71 volume:5 year:2008 number:1 pages:57-71 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biotechnology |
isfreeaccess_bool |
true |
container_title |
Journal of Integrative Bioinformatics |
authorswithroles_txt_mv |
Segata Nicola @@aut@@ Blanzieri Enrico @@aut@@ Priami Corrado @@aut@@ |
publishDateDaySort_date |
2008-01-01T00:00:00Z |
hierarchy_top_id |
388546603 |
id |
DOAJ07075327X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07075327X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309094348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jib-2008-87</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07075327X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Segata Nicola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Blanzieri Enrico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Priami Corrado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Integrative Bioinformatics</subfield><subfield code="d">De Gruyter, 2018</subfield><subfield code="g">5(2008), 1, Seite 57-71</subfield><subfield code="w">(DE-627)388546603</subfield><subfield code="w">(DE-600)2147212-9</subfield><subfield code="x">16134516</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:57-71</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jib-2008-87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1613-4516</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="h">57-71</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Segata Nicola |
spellingShingle |
Segata Nicola misc TP248.13-248.65 misc Biotechnology Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
authorStr |
Segata Nicola |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)388546603 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
16134516 |
topic_title |
TP248.13-248.65 Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
topic |
misc TP248.13-248.65 misc Biotechnology |
topic_unstemmed |
misc TP248.13-248.65 misc Biotechnology |
topic_browse |
misc TP248.13-248.65 misc Biotechnology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Integrative Bioinformatics |
hierarchy_parent_id |
388546603 |
hierarchy_top_title |
Journal of Integrative Bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)388546603 (DE-600)2147212-9 |
title |
Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
ctrlnum |
(DE-627)DOAJ07075327X (DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5 |
title_full |
Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
author_sort |
Segata Nicola |
journal |
Journal of Integrative Bioinformatics |
journalStr |
Journal of Integrative Bioinformatics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
57 |
author_browse |
Segata Nicola Blanzieri Enrico Priami Corrado |
container_volume |
5 |
class |
TP248.13-248.65 |
format_se |
Elektronische Aufsätze |
author-letter |
Segata Nicola |
doi_str_mv |
10.1515/jib-2008-87 |
author2-role |
verfasserin |
title_sort |
towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
callnumber |
TP248.13-248.65 |
title_auth |
Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
abstract |
The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. |
abstractGer |
The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. |
abstract_unstemmed |
The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data |
url |
https://doi.org/10.1515/jib-2008-87 https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5 http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT https://doaj.org/toc/1613-4516 |
remote_bool |
true |
author2 |
Blanzieri Enrico Priami Corrado |
author2Str |
Blanzieri Enrico Priami Corrado |
ppnlink |
388546603 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/jib-2008-87 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T16:31:08.857Z |
_version_ |
1803576167743094785 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07075327X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309094348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/jib-2008-87</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07075327X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29f0a92e1b634d47a34419a82b5bcfa5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Segata Nicola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards the integration of computational systems biology and high-throughput data: supporting differential analysis of microarray gene expression data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paradigmatic shift occurred in biology that led first to high-throughput experimental techniques and later to computational systems biology must be applied also to the analysis paradigm of the relation between local models and data to obtain an effective prediction tool. In this work we introduce a unifying notational framework for systems biology models and high-throughput data in order to allow new integrations on the systemic scale like the use of in silico predictions to support the mining of gene expression datasets. Using the framework, we propose two applications concerning the use of system level models to support the differential analysis of microarray expression data. We tested the potentialities of the approach with a specific microarray experiment on the phosphate system in Saccharomyces cerevisiae and a computational model of the PHO pathway that supports the systems biology concepts.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Blanzieri Enrico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Priami Corrado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Integrative Bioinformatics</subfield><subfield code="d">De Gruyter, 2018</subfield><subfield code="g">5(2008), 1, Seite 57-71</subfield><subfield code="w">(DE-627)388546603</subfield><subfield code="w">(DE-600)2147212-9</subfield><subfield code="x">16134516</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:57-71</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/jib-2008-87</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29f0a92e1b634d47a34419a82b5bcfa5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/view/j/jib.2008.5.issue-1/biecoll-jib-2008-87/biecoll-jib-2008-87.xml?format=INT</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1613-4516</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="h">57-71</subfield></datafield></record></collection>
|
score |
7.402237 |