Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications
Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrica...
Ausführliche Beschreibung
Autor*in: |
Nader Almufleh [verfasserIn] Amani Al-Othman [verfasserIn] Zaid Alani [verfasserIn] Mohammad H. Al-Sayah [verfasserIn] Hasan Al-Nashash [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronic Materials - MDPI AG, 2021, 2(2021), 3, Seite 413-427 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2021 ; number:3 ; pages:413-427 |
Links: |
---|
DOI / URN: |
10.3390/electronicmat2030028 |
---|
Katalog-ID: |
DOAJ071089071 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071089071 | ||
003 | DE-627 | ||
005 | 20240412160718.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronicmat2030028 |2 doi | |
035 | |a (DE-627)DOAJ071089071 | ||
035 | |a (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA71-90 | |
100 | 0 | |a Nader Almufleh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. | ||
650 | 4 | |a conductive polymers | |
650 | 4 | |a implantable electrodes | |
650 | 4 | |a flexible polyaniline | |
650 | 4 | |a electrochemical properties | |
650 | 4 | |a neural sensing | |
653 | 0 | |a Instruments and machines | |
700 | 0 | |a Amani Al-Othman |e verfasserin |4 aut | |
700 | 0 | |a Zaid Alani |e verfasserin |4 aut | |
700 | 0 | |a Mohammad H. Al-Sayah |e verfasserin |4 aut | |
700 | 0 | |a Hasan Al-Nashash |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronic Materials |d MDPI AG, 2021 |g 2(2021), 3, Seite 413-427 |w (DE-627)1698222939 |x 26733978 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2021 |g number:3 |g pages:413-427 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronicmat2030028 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1e4650999b3f440090aa2066f596de13 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2673-3978/2/3/28 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-3978 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2021 |e 3 |h 413-427 |
author_variant |
n a na a a o aao z a za m h a s mhas h a n han |
---|---|
matchkey_str |
article:26733978:2021----::ihylxbeoynlnbsdmlnaleetoeaeilfrerles |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QA |
publishDate |
2021 |
allfields |
10.3390/electronicmat2030028 doi (DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 DE-627 ger DE-627 rakwb eng QA71-90 Nader Almufleh verfasserin aut Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines Amani Al-Othman verfasserin aut Zaid Alani verfasserin aut Mohammad H. Al-Sayah verfasserin aut Hasan Al-Nashash verfasserin aut In Electronic Materials MDPI AG, 2021 2(2021), 3, Seite 413-427 (DE-627)1698222939 26733978 nnns volume:2 year:2021 number:3 pages:413-427 https://doi.org/10.3390/electronicmat2030028 kostenfrei https://doaj.org/article/1e4650999b3f440090aa2066f596de13 kostenfrei https://www.mdpi.com/2673-3978/2/3/28 kostenfrei https://doaj.org/toc/2673-3978 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 3 413-427 |
spelling |
10.3390/electronicmat2030028 doi (DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 DE-627 ger DE-627 rakwb eng QA71-90 Nader Almufleh verfasserin aut Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines Amani Al-Othman verfasserin aut Zaid Alani verfasserin aut Mohammad H. Al-Sayah verfasserin aut Hasan Al-Nashash verfasserin aut In Electronic Materials MDPI AG, 2021 2(2021), 3, Seite 413-427 (DE-627)1698222939 26733978 nnns volume:2 year:2021 number:3 pages:413-427 https://doi.org/10.3390/electronicmat2030028 kostenfrei https://doaj.org/article/1e4650999b3f440090aa2066f596de13 kostenfrei https://www.mdpi.com/2673-3978/2/3/28 kostenfrei https://doaj.org/toc/2673-3978 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 3 413-427 |
allfields_unstemmed |
10.3390/electronicmat2030028 doi (DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 DE-627 ger DE-627 rakwb eng QA71-90 Nader Almufleh verfasserin aut Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines Amani Al-Othman verfasserin aut Zaid Alani verfasserin aut Mohammad H. Al-Sayah verfasserin aut Hasan Al-Nashash verfasserin aut In Electronic Materials MDPI AG, 2021 2(2021), 3, Seite 413-427 (DE-627)1698222939 26733978 nnns volume:2 year:2021 number:3 pages:413-427 https://doi.org/10.3390/electronicmat2030028 kostenfrei https://doaj.org/article/1e4650999b3f440090aa2066f596de13 kostenfrei https://www.mdpi.com/2673-3978/2/3/28 kostenfrei https://doaj.org/toc/2673-3978 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 3 413-427 |
allfieldsGer |
10.3390/electronicmat2030028 doi (DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 DE-627 ger DE-627 rakwb eng QA71-90 Nader Almufleh verfasserin aut Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines Amani Al-Othman verfasserin aut Zaid Alani verfasserin aut Mohammad H. Al-Sayah verfasserin aut Hasan Al-Nashash verfasserin aut In Electronic Materials MDPI AG, 2021 2(2021), 3, Seite 413-427 (DE-627)1698222939 26733978 nnns volume:2 year:2021 number:3 pages:413-427 https://doi.org/10.3390/electronicmat2030028 kostenfrei https://doaj.org/article/1e4650999b3f440090aa2066f596de13 kostenfrei https://www.mdpi.com/2673-3978/2/3/28 kostenfrei https://doaj.org/toc/2673-3978 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 3 413-427 |
allfieldsSound |
10.3390/electronicmat2030028 doi (DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 DE-627 ger DE-627 rakwb eng QA71-90 Nader Almufleh verfasserin aut Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines Amani Al-Othman verfasserin aut Zaid Alani verfasserin aut Mohammad H. Al-Sayah verfasserin aut Hasan Al-Nashash verfasserin aut In Electronic Materials MDPI AG, 2021 2(2021), 3, Seite 413-427 (DE-627)1698222939 26733978 nnns volume:2 year:2021 number:3 pages:413-427 https://doi.org/10.3390/electronicmat2030028 kostenfrei https://doaj.org/article/1e4650999b3f440090aa2066f596de13 kostenfrei https://www.mdpi.com/2673-3978/2/3/28 kostenfrei https://doaj.org/toc/2673-3978 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 3 413-427 |
language |
English |
source |
In Electronic Materials 2(2021), 3, Seite 413-427 volume:2 year:2021 number:3 pages:413-427 |
sourceStr |
In Electronic Materials 2(2021), 3, Seite 413-427 volume:2 year:2021 number:3 pages:413-427 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing Instruments and machines |
isfreeaccess_bool |
true |
container_title |
Electronic Materials |
authorswithroles_txt_mv |
Nader Almufleh @@aut@@ Amani Al-Othman @@aut@@ Zaid Alani @@aut@@ Mohammad H. Al-Sayah @@aut@@ Hasan Al-Nashash @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1698222939 |
id |
DOAJ071089071 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071089071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412160718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronicmat2030028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071089071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1e4650999b3f440090aa2066f596de13</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA71-90</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nader Almufleh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conductive polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implantable electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible polyaniline</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Instruments and machines</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amani Al-Othman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zaid Alani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad H. Al-Sayah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hasan Al-Nashash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Materials</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">2(2021), 3, Seite 413-427</subfield><subfield code="w">(DE-627)1698222939</subfield><subfield code="x">26733978</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:413-427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronicmat2030028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1e4650999b3f440090aa2066f596de13</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-3978/2/3/28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-3978</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">413-427</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Nader Almufleh |
spellingShingle |
Nader Almufleh misc QA71-90 misc conductive polymers misc implantable electrodes misc flexible polyaniline misc electrochemical properties misc neural sensing misc Instruments and machines Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
authorStr |
Nader Almufleh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1698222939 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA71-90 |
illustrated |
Not Illustrated |
issn |
26733978 |
topic_title |
QA71-90 Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications conductive polymers implantable electrodes flexible polyaniline electrochemical properties neural sensing |
topic |
misc QA71-90 misc conductive polymers misc implantable electrodes misc flexible polyaniline misc electrochemical properties misc neural sensing misc Instruments and machines |
topic_unstemmed |
misc QA71-90 misc conductive polymers misc implantable electrodes misc flexible polyaniline misc electrochemical properties misc neural sensing misc Instruments and machines |
topic_browse |
misc QA71-90 misc conductive polymers misc implantable electrodes misc flexible polyaniline misc electrochemical properties misc neural sensing misc Instruments and machines |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronic Materials |
hierarchy_parent_id |
1698222939 |
hierarchy_top_title |
Electronic Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1698222939 |
title |
Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
ctrlnum |
(DE-627)DOAJ071089071 (DE-599)DOAJ1e4650999b3f440090aa2066f596de13 |
title_full |
Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
author_sort |
Nader Almufleh |
journal |
Electronic Materials |
journalStr |
Electronic Materials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
413 |
author_browse |
Nader Almufleh Amani Al-Othman Zaid Alani Mohammad H. Al-Sayah Hasan Al-Nashash |
container_volume |
2 |
class |
QA71-90 |
format_se |
Elektronische Aufsätze |
author-letter |
Nader Almufleh |
doi_str_mv |
10.3390/electronicmat2030028 |
author2-role |
verfasserin |
title_sort |
highly flexible polyaniline-based implantable electrode materials for neural sensing/stimulation applications |
callnumber |
QA71-90 |
title_auth |
Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
abstract |
Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. |
abstractGer |
Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. |
abstract_unstemmed |
Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications |
url |
https://doi.org/10.3390/electronicmat2030028 https://doaj.org/article/1e4650999b3f440090aa2066f596de13 https://www.mdpi.com/2673-3978/2/3/28 https://doaj.org/toc/2673-3978 |
remote_bool |
true |
author2 |
Amani Al-Othman Zaid Alani Mohammad H. Al-Sayah Hasan Al-Nashash |
author2Str |
Amani Al-Othman Zaid Alani Mohammad H. Al-Sayah Hasan Al-Nashash |
ppnlink |
1698222939 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronicmat2030028 |
callnumber-a |
QA71-90 |
up_date |
2024-07-03T18:22:21.761Z |
_version_ |
1803583164795322368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071089071</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412160718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronicmat2030028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071089071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1e4650999b3f440090aa2066f596de13</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA71-90</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nader Almufleh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Implantable bioelectrodes have the potential to advance neural sensing and muscle stimulation, mainly in patients with peripheral nerve injuries. They function as the transducer at the interface between the damaged nerve and the muscle which is controlled by that nerve. This work reports the fabrication and characterization of novel, low-cost, flexible bioelectrodes based on polyaniline (PANI) and supported with silicone polymer. The fabricated electrodes were evaluated for their electrical and mechanical characteristics. PANI was used as the main transducer component in this fabrication. The characterization methods included electrical conductivity, capacitive behavior, long-term electrical impedance, and mechanical evaluation. The results of the fabricated PANI-silicone-based samples displayed a bulk impedance of 0.6 kΩ with an impedance of 1.6 kΩ at the frequency of 1 kHz. Furthermore, the bioelectrodes showed a charge storage capacity range from 0.0730 to 4.3124 C/cm<sup<2</sup<. The samples were stable when subjected to cyclic voltammetry tests. The bioelectrodes revealed very flexible mechanical properties as observed from the value of Young’s modulus (in the order of MPa) which was less than that of skin. Hence, the PANI-based bioelectrodes reported herein showed promising electrochemical characteristics with high flexibility.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conductive polymers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implantable electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flexible polyaniline</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural sensing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Instruments and machines</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amani Al-Othman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zaid Alani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohammad H. Al-Sayah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hasan Al-Nashash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronic Materials</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">2(2021), 3, Seite 413-427</subfield><subfield code="w">(DE-627)1698222939</subfield><subfield code="x">26733978</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:413-427</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronicmat2030028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1e4650999b3f440090aa2066f596de13</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2673-3978/2/3/28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-3978</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">413-427</subfield></datafield></record></collection>
|
score |
7.39989 |