Multiobjective Knapsack Problem with Equity Concerns
In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solution...
Ausführliche Beschreibung
Autor*in: |
Özlem KARSU [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Türkisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Gazi Üniversitesi Fen Bilimleri Dergisi - Gazi University, 2018, 6(2018), 2, Seite 358-373 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; number:2 ; pages:358-373 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.29109/http-gujsc-gazi-edu-tr.362369 |
---|
Katalog-ID: |
DOAJ071213902 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071213902 | ||
003 | DE-627 | ||
005 | 20230310175734.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.29109/http-gujsc-gazi-edu-tr.362369 |2 doi | |
035 | |a (DE-627)DOAJ071213902 | ||
035 | |a (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a tur | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a Q1-390 | |
100 | 0 | |a Özlem KARSU |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiobjective Knapsack Problem with Equity Concerns |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. | ||
650 | 4 | |a Multi-objective knapsack problem | |
650 | 4 | |a Equitable preferences | |
650 | 4 | |a Equitable efficiency | |
650 | 4 | |a Dynamic programming | |
650 | 4 | |a Epsilon-constraint approach | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Science (General) | |
773 | 0 | 8 | |i In |t Gazi Üniversitesi Fen Bilimleri Dergisi |d Gazi University, 2018 |g 6(2018), 2, Seite 358-373 |w (DE-627)372369510 |w (DE-600)2123454-1 |x 21479526 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g number:2 |g pages:358-373 |
856 | 4 | 0 | |u https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f |z kostenfrei |
856 | 4 | 0 | |u http://dergipark.gov.tr/download/article-file/408157 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2147-9526 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2147-9526 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |e 2 |h 358-373 |
author_variant |
ö k ök |
---|---|
matchkey_str |
article:21479526:2018----::utojcienpakrbewt |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TA |
publishDate |
2018 |
allfields |
10.29109/http-gujsc-gazi-edu-tr.362369 doi (DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f DE-627 ger DE-627 rakwb eng tur TA1-2040 Q1-390 Özlem KARSU verfasserin aut Multiobjective Knapsack Problem with Equity Concerns 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) In Gazi Üniversitesi Fen Bilimleri Dergisi Gazi University, 2018 6(2018), 2, Seite 358-373 (DE-627)372369510 (DE-600)2123454-1 21479526 nnns volume:6 year:2018 number:2 pages:358-373 https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 kostenfrei https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f kostenfrei http://dergipark.gov.tr/download/article-file/408157 kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 2 358-373 |
spelling |
10.29109/http-gujsc-gazi-edu-tr.362369 doi (DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f DE-627 ger DE-627 rakwb eng tur TA1-2040 Q1-390 Özlem KARSU verfasserin aut Multiobjective Knapsack Problem with Equity Concerns 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) In Gazi Üniversitesi Fen Bilimleri Dergisi Gazi University, 2018 6(2018), 2, Seite 358-373 (DE-627)372369510 (DE-600)2123454-1 21479526 nnns volume:6 year:2018 number:2 pages:358-373 https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 kostenfrei https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f kostenfrei http://dergipark.gov.tr/download/article-file/408157 kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 2 358-373 |
allfields_unstemmed |
10.29109/http-gujsc-gazi-edu-tr.362369 doi (DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f DE-627 ger DE-627 rakwb eng tur TA1-2040 Q1-390 Özlem KARSU verfasserin aut Multiobjective Knapsack Problem with Equity Concerns 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) In Gazi Üniversitesi Fen Bilimleri Dergisi Gazi University, 2018 6(2018), 2, Seite 358-373 (DE-627)372369510 (DE-600)2123454-1 21479526 nnns volume:6 year:2018 number:2 pages:358-373 https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 kostenfrei https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f kostenfrei http://dergipark.gov.tr/download/article-file/408157 kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 2 358-373 |
allfieldsGer |
10.29109/http-gujsc-gazi-edu-tr.362369 doi (DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f DE-627 ger DE-627 rakwb eng tur TA1-2040 Q1-390 Özlem KARSU verfasserin aut Multiobjective Knapsack Problem with Equity Concerns 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) In Gazi Üniversitesi Fen Bilimleri Dergisi Gazi University, 2018 6(2018), 2, Seite 358-373 (DE-627)372369510 (DE-600)2123454-1 21479526 nnns volume:6 year:2018 number:2 pages:358-373 https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 kostenfrei https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f kostenfrei http://dergipark.gov.tr/download/article-file/408157 kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 2 358-373 |
allfieldsSound |
10.29109/http-gujsc-gazi-edu-tr.362369 doi (DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f DE-627 ger DE-627 rakwb eng tur TA1-2040 Q1-390 Özlem KARSU verfasserin aut Multiobjective Knapsack Problem with Equity Concerns 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) In Gazi Üniversitesi Fen Bilimleri Dergisi Gazi University, 2018 6(2018), 2, Seite 358-373 (DE-627)372369510 (DE-600)2123454-1 21479526 nnns volume:6 year:2018 number:2 pages:358-373 https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 kostenfrei https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f kostenfrei http://dergipark.gov.tr/download/article-file/408157 kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei https://doaj.org/toc/2147-9526 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 2 358-373 |
language |
English Turkish |
source |
In Gazi Üniversitesi Fen Bilimleri Dergisi 6(2018), 2, Seite 358-373 volume:6 year:2018 number:2 pages:358-373 |
sourceStr |
In Gazi Üniversitesi Fen Bilimleri Dergisi 6(2018), 2, Seite 358-373 volume:6 year:2018 number:2 pages:358-373 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach Engineering (General). Civil engineering (General) Science Q Science (General) |
isfreeaccess_bool |
true |
container_title |
Gazi Üniversitesi Fen Bilimleri Dergisi |
authorswithroles_txt_mv |
Özlem KARSU @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
372369510 |
id |
DOAJ071213902 |
language_de |
englisch türkisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071213902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310175734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29109/http-gujsc-gazi-edu-tr.362369</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071213902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">tur</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Özlem KARSU</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiobjective Knapsack Problem with Equity Concerns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective knapsack problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equitable preferences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equitable efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epsilon-constraint approach</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gazi Üniversitesi Fen Bilimleri Dergisi</subfield><subfield code="d">Gazi University, 2018</subfield><subfield code="g">6(2018), 2, Seite 358-373</subfield><subfield code="w">(DE-627)372369510</subfield><subfield code="w">(DE-600)2123454-1</subfield><subfield code="x">21479526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:358-373</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dergipark.gov.tr/download/article-file/408157</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2147-9526</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2147-9526</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="h">358-373</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Özlem KARSU |
spellingShingle |
Özlem KARSU misc TA1-2040 misc Q1-390 misc Multi-objective knapsack problem misc Equitable preferences misc Equitable efficiency misc Dynamic programming misc Epsilon-constraint approach misc Engineering (General). Civil engineering (General) misc Science misc Q misc Science (General) Multiobjective Knapsack Problem with Equity Concerns |
authorStr |
Özlem KARSU |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)372369510 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
21479526 |
topic_title |
TA1-2040 Q1-390 Multiobjective Knapsack Problem with Equity Concerns Multi-objective knapsack problem Equitable preferences Equitable efficiency Dynamic programming Epsilon-constraint approach |
topic |
misc TA1-2040 misc Q1-390 misc Multi-objective knapsack problem misc Equitable preferences misc Equitable efficiency misc Dynamic programming misc Epsilon-constraint approach misc Engineering (General). Civil engineering (General) misc Science misc Q misc Science (General) |
topic_unstemmed |
misc TA1-2040 misc Q1-390 misc Multi-objective knapsack problem misc Equitable preferences misc Equitable efficiency misc Dynamic programming misc Epsilon-constraint approach misc Engineering (General). Civil engineering (General) misc Science misc Q misc Science (General) |
topic_browse |
misc TA1-2040 misc Q1-390 misc Multi-objective knapsack problem misc Equitable preferences misc Equitable efficiency misc Dynamic programming misc Epsilon-constraint approach misc Engineering (General). Civil engineering (General) misc Science misc Q misc Science (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Gazi Üniversitesi Fen Bilimleri Dergisi |
hierarchy_parent_id |
372369510 |
hierarchy_top_title |
Gazi Üniversitesi Fen Bilimleri Dergisi |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)372369510 (DE-600)2123454-1 |
title |
Multiobjective Knapsack Problem with Equity Concerns |
ctrlnum |
(DE-627)DOAJ071213902 (DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f |
title_full |
Multiobjective Knapsack Problem with Equity Concerns |
author_sort |
Özlem KARSU |
journal |
Gazi Üniversitesi Fen Bilimleri Dergisi |
journalStr |
Gazi Üniversitesi Fen Bilimleri Dergisi |
callnumber-first-code |
T |
lang_code |
eng tur |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
358 |
author_browse |
Özlem KARSU |
container_volume |
6 |
class |
TA1-2040 Q1-390 |
format_se |
Elektronische Aufsätze |
author-letter |
Özlem KARSU |
doi_str_mv |
10.29109/http-gujsc-gazi-edu-tr.362369 |
title_sort |
multiobjective knapsack problem with equity concerns |
callnumber |
TA1-2040 |
title_auth |
Multiobjective Knapsack Problem with Equity Concerns |
abstract |
In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. |
abstractGer |
In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. |
abstract_unstemmed |
In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Multiobjective Knapsack Problem with Equity Concerns |
url |
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369 https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f http://dergipark.gov.tr/download/article-file/408157 https://doaj.org/toc/2147-9526 |
remote_bool |
true |
ppnlink |
372369510 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.29109/http-gujsc-gazi-edu-tr.362369 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:02:38.982Z |
_version_ |
1803585699432103936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071213902</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310175734.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29109/http-gujsc-gazi-edu-tr.362369</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071213902</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfaf95abc9d4a4bc7bb57c1087ed2435f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">tur</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Özlem KARSU</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiobjective Knapsack Problem with Equity Concerns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a multi-objective mathematical modeling approach has been developed for resource distribution problem which has equity concerns. We assume that the preference model of the decision maker satisfies properties related to inequity-aversion, hence we focus on finding nondominated solutions in line with the properties of inequity-averse preferences, namely the equitably efficient solutions. We propose a dynamic programming (DP) based algorithm, which exploits different lower and upper bounds to eliminate partial solutions that will not lead to equitably efficient solutions. In addition to the lower bounds previously discussed in the literature, we define a new lower bound and demonstrate its effectiveness. We perform experiments to show and discuss the performances of the DP algorithm and another well-known exact approach, the epsilon constraint method, for bi-objective settings. We also provide results of the epsilon constraint method for three-objective settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-objective knapsack problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equitable preferences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equitable efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epsilon-constraint approach</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Gazi Üniversitesi Fen Bilimleri Dergisi</subfield><subfield code="d">Gazi University, 2018</subfield><subfield code="g">6(2018), 2, Seite 358-373</subfield><subfield code="w">(DE-627)372369510</subfield><subfield code="w">(DE-600)2123454-1</subfield><subfield code="x">21479526</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:358-373</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29109/http-gujsc-gazi-edu-tr.362369</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/faf95abc9d4a4bc7bb57c1087ed2435f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dergipark.gov.tr/download/article-file/408157</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2147-9526</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2147-9526</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">2</subfield><subfield code="h">358-373</subfield></datafield></record></collection>
|
score |
7.402158 |