Parameter estimation methods for chaotic intercellular networks.
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed fro...
Ausführliche Beschreibung
Autor*in: |
Inés P Mariño [verfasserIn] Ekkehard Ullner [verfasserIn] Alexey Zaikin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 8(2013), 11, p e79892 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2013 ; number:11, p e79892 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0079892 |
---|
Katalog-ID: |
DOAJ071234985 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071234985 | ||
003 | DE-627 | ||
005 | 20230309100623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0079892 |2 doi | |
035 | |a (DE-627)DOAJ071234985 | ||
035 | |a (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Inés P Mariño |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parameter estimation methods for chaotic intercellular networks. |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Ekkehard Ullner |e verfasserin |4 aut | |
700 | 0 | |a Alexey Zaikin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 8(2013), 11, p e79892 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2013 |g number:11, p e79892 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0079892 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 |z kostenfrei |
856 | 4 | 0 | |u http://europepmc.org/articles/PMC3839924?pdf=render |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2013 |e 11, p e79892 |
author_variant |
i p m ipm e u eu a z az |
---|---|
matchkey_str |
article:19326203:2013----::aaeeetmtomtosocatcnec |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1371/journal.pone.0079892 doi (DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 DE-627 ger DE-627 rakwb eng Inés P Mariño verfasserin aut Parameter estimation methods for chaotic intercellular networks. 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. Medicine R Science Q Ekkehard Ullner verfasserin aut Alexey Zaikin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 8(2013), 11, p e79892 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:8 year:2013 number:11, p e79892 https://doi.org/10.1371/journal.pone.0079892 kostenfrei https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 kostenfrei http://europepmc.org/articles/PMC3839924?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 11, p e79892 |
spelling |
10.1371/journal.pone.0079892 doi (DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 DE-627 ger DE-627 rakwb eng Inés P Mariño verfasserin aut Parameter estimation methods for chaotic intercellular networks. 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. Medicine R Science Q Ekkehard Ullner verfasserin aut Alexey Zaikin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 8(2013), 11, p e79892 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:8 year:2013 number:11, p e79892 https://doi.org/10.1371/journal.pone.0079892 kostenfrei https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 kostenfrei http://europepmc.org/articles/PMC3839924?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 11, p e79892 |
allfields_unstemmed |
10.1371/journal.pone.0079892 doi (DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 DE-627 ger DE-627 rakwb eng Inés P Mariño verfasserin aut Parameter estimation methods for chaotic intercellular networks. 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. Medicine R Science Q Ekkehard Ullner verfasserin aut Alexey Zaikin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 8(2013), 11, p e79892 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:8 year:2013 number:11, p e79892 https://doi.org/10.1371/journal.pone.0079892 kostenfrei https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 kostenfrei http://europepmc.org/articles/PMC3839924?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 11, p e79892 |
allfieldsGer |
10.1371/journal.pone.0079892 doi (DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 DE-627 ger DE-627 rakwb eng Inés P Mariño verfasserin aut Parameter estimation methods for chaotic intercellular networks. 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. Medicine R Science Q Ekkehard Ullner verfasserin aut Alexey Zaikin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 8(2013), 11, p e79892 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:8 year:2013 number:11, p e79892 https://doi.org/10.1371/journal.pone.0079892 kostenfrei https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 kostenfrei http://europepmc.org/articles/PMC3839924?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 11, p e79892 |
allfieldsSound |
10.1371/journal.pone.0079892 doi (DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 DE-627 ger DE-627 rakwb eng Inés P Mariño verfasserin aut Parameter estimation methods for chaotic intercellular networks. 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. Medicine R Science Q Ekkehard Ullner verfasserin aut Alexey Zaikin verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 8(2013), 11, p e79892 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:8 year:2013 number:11, p e79892 https://doi.org/10.1371/journal.pone.0079892 kostenfrei https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 kostenfrei http://europepmc.org/articles/PMC3839924?pdf=render kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2013 11, p e79892 |
language |
English |
source |
In PLoS ONE 8(2013), 11, p e79892 volume:8 year:2013 number:11, p e79892 |
sourceStr |
In PLoS ONE 8(2013), 11, p e79892 volume:8 year:2013 number:11, p e79892 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Inés P Mariño @@aut@@ Ekkehard Ullner @@aut@@ Alexey Zaikin @@aut@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ071234985 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071234985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309100623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0079892</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071234985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Inés P Mariño</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parameter estimation methods for chaotic intercellular networks.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ekkehard Ullner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">8(2013), 11, p e79892</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11, p e79892</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0079892</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://europepmc.org/articles/PMC3839924?pdf=render</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2013</subfield><subfield code="e">11, p e79892</subfield></datafield></record></collection>
|
author |
Inés P Mariño |
spellingShingle |
Inés P Mariño misc Medicine misc R misc Science misc Q Parameter estimation methods for chaotic intercellular networks. |
authorStr |
Inés P Mariño |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Parameter estimation methods for chaotic intercellular networks |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Parameter estimation methods for chaotic intercellular networks. |
ctrlnum |
(DE-627)DOAJ071234985 (DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8 |
title_full |
Parameter estimation methods for chaotic intercellular networks |
author_sort |
Inés P Mariño |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Inés P Mariño Ekkehard Ullner Alexey Zaikin |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Inés P Mariño |
doi_str_mv |
10.1371/journal.pone.0079892 |
author2-role |
verfasserin |
title_sort |
parameter estimation methods for chaotic intercellular networks |
title_auth |
Parameter estimation methods for chaotic intercellular networks. |
abstract |
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. |
abstractGer |
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. |
abstract_unstemmed |
We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p e79892 |
title_short |
Parameter estimation methods for chaotic intercellular networks. |
url |
https://doi.org/10.1371/journal.pone.0079892 https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8 http://europepmc.org/articles/PMC3839924?pdf=render https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Ekkehard Ullner Alexey Zaikin |
author2Str |
Ekkehard Ullner Alexey Zaikin |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0079892 |
up_date |
2024-07-03T19:09:31.946Z |
_version_ |
1803586132457291777 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071234985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309100623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0079892</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071234985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ43e0c49f16a4447db1af408f0e2632f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Inés P Mariño</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parameter estimation methods for chaotic intercellular networks.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm, known as accelerated random search method, and the other two techniques are based on approximate Bayesian computation. The latter is a general methodology for non-parametric inference that can be applied to practically any system of interest. The first method based on approximate Bayesian computation is a Markov Chain Monte Carlo scheme that generates a series of random parameter realizations for which a low synchronization error is guaranteed. We show that accurate parameter estimates can be obtained by averaging over these realizations. The second ABC-based technique is a Sequential Monte Carlo scheme. The algorithm generates a sequence of "populations", i.e., sets of randomly generated parameter values, where the members of a certain population attain a synchronization error that is lesser than the error attained by members of the previous population. Again, we show that accurate estimates can be obtained by averaging over the parameter values in the last population of the sequence. We have analysed how effective these methods are from a computational perspective. For the numerical simulations we have considered a network that consists of two modified repressilators with identical parameters, coupled by the fast diffusion of the autoinducer across the cell membranes.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ekkehard Ullner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey Zaikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">8(2013), 11, p e79892</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:11, p e79892</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0079892</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/43e0c49f16a4447db1af408f0e2632f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://europepmc.org/articles/PMC3839924?pdf=render</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2013</subfield><subfield code="e">11, p e79892</subfield></datafield></record></collection>
|
score |
7.4014235 |