Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter
This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped distu...
Ausführliche Beschreibung
Autor*in: |
Nguyen Ngoc Nam [verfasserIn] Ngoc-Duc Nguyen [verfasserIn] Changwoo Yoon [verfasserIn] Young Il Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 9(2021), Seite 109793-109805 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2021 ; pages:109793-109805 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2021.3102628 |
---|
Katalog-ID: |
DOAJ071341587 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071341587 | ||
003 | DE-627 | ||
005 | 20230309101256.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2021.3102628 |2 doi | |
035 | |a (DE-627)DOAJ071341587 | ||
035 | |a (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Nguyen Ngoc Nam |e verfasserin |4 aut | |
245 | 1 | 0 | |a Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. | ||
650 | 4 | |a Sensorless model predictive control (MPC) | |
650 | 4 | |a disturbance observer | |
650 | 4 | |a three-phase inverters | |
650 | 4 | |a inductive-capacitive-inductive (LCL) | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Ngoc-Duc Nguyen |e verfasserin |4 aut | |
700 | 0 | |a Changwoo Yoon |e verfasserin |4 aut | |
700 | 0 | |a Young Il Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 9(2021), Seite 109793-109805 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2021 |g pages:109793-109805 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2021.3102628 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9507463/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2021 |h 109793-109805 |
author_variant |
n n n nnn n d n ndn c y cy y i l yil |
---|---|
matchkey_str |
article:21693536:2021----::itracosrebsdoutoepeitvcnrloaotgsnolsgicn |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TK |
publishDate |
2021 |
allfields |
10.1109/ACCESS.2021.3102628 doi (DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec DE-627 ger DE-627 rakwb eng TK1-9971 Nguyen Ngoc Nam verfasserin aut Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering Ngoc-Duc Nguyen verfasserin aut Changwoo Yoon verfasserin aut Young Il Lee verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 109793-109805 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:109793-109805 https://doi.org/10.1109/ACCESS.2021.3102628 kostenfrei https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec kostenfrei https://ieeexplore.ieee.org/document/9507463/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 109793-109805 |
spelling |
10.1109/ACCESS.2021.3102628 doi (DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec DE-627 ger DE-627 rakwb eng TK1-9971 Nguyen Ngoc Nam verfasserin aut Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering Ngoc-Duc Nguyen verfasserin aut Changwoo Yoon verfasserin aut Young Il Lee verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 109793-109805 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:109793-109805 https://doi.org/10.1109/ACCESS.2021.3102628 kostenfrei https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec kostenfrei https://ieeexplore.ieee.org/document/9507463/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 109793-109805 |
allfields_unstemmed |
10.1109/ACCESS.2021.3102628 doi (DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec DE-627 ger DE-627 rakwb eng TK1-9971 Nguyen Ngoc Nam verfasserin aut Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering Ngoc-Duc Nguyen verfasserin aut Changwoo Yoon verfasserin aut Young Il Lee verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 109793-109805 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:109793-109805 https://doi.org/10.1109/ACCESS.2021.3102628 kostenfrei https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec kostenfrei https://ieeexplore.ieee.org/document/9507463/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 109793-109805 |
allfieldsGer |
10.1109/ACCESS.2021.3102628 doi (DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec DE-627 ger DE-627 rakwb eng TK1-9971 Nguyen Ngoc Nam verfasserin aut Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering Ngoc-Duc Nguyen verfasserin aut Changwoo Yoon verfasserin aut Young Il Lee verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 109793-109805 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:109793-109805 https://doi.org/10.1109/ACCESS.2021.3102628 kostenfrei https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec kostenfrei https://ieeexplore.ieee.org/document/9507463/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 109793-109805 |
allfieldsSound |
10.1109/ACCESS.2021.3102628 doi (DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec DE-627 ger DE-627 rakwb eng TK1-9971 Nguyen Ngoc Nam verfasserin aut Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering Ngoc-Duc Nguyen verfasserin aut Changwoo Yoon verfasserin aut Young Il Lee verfasserin aut In IEEE Access IEEE, 2014 9(2021), Seite 109793-109805 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:9 year:2021 pages:109793-109805 https://doi.org/10.1109/ACCESS.2021.3102628 kostenfrei https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec kostenfrei https://ieeexplore.ieee.org/document/9507463/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2021 109793-109805 |
language |
English |
source |
In IEEE Access 9(2021), Seite 109793-109805 volume:9 year:2021 pages:109793-109805 |
sourceStr |
In IEEE Access 9(2021), Seite 109793-109805 volume:9 year:2021 pages:109793-109805 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Nguyen Ngoc Nam @@aut@@ Ngoc-Duc Nguyen @@aut@@ Changwoo Yoon @@aut@@ Young Il Lee @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ071341587 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071341587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309101256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3102628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071341587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nguyen Ngoc Nam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensorless model predictive control (MPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">disturbance observer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-phase inverters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inductive-capacitive-inductive (LCL)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngoc-Duc Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changwoo Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Il Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 109793-109805</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109793-109805</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3102628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9507463/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">109793-109805</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Nguyen Ngoc Nam |
spellingShingle |
Nguyen Ngoc Nam misc TK1-9971 misc Sensorless model predictive control (MPC) misc disturbance observer misc three-phase inverters misc inductive-capacitive-inductive (LCL) misc Electrical engineering. Electronics. Nuclear engineering Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
authorStr |
Nguyen Ngoc Nam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter Sensorless model predictive control (MPC) disturbance observer three-phase inverters inductive-capacitive-inductive (LCL) |
topic |
misc TK1-9971 misc Sensorless model predictive control (MPC) misc disturbance observer misc three-phase inverters misc inductive-capacitive-inductive (LCL) misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Sensorless model predictive control (MPC) misc disturbance observer misc three-phase inverters misc inductive-capacitive-inductive (LCL) misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Sensorless model predictive control (MPC) misc disturbance observer misc three-phase inverters misc inductive-capacitive-inductive (LCL) misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
ctrlnum |
(DE-627)DOAJ071341587 (DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec |
title_full |
Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
author_sort |
Nguyen Ngoc Nam |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
109793 |
author_browse |
Nguyen Ngoc Nam Ngoc-Duc Nguyen Changwoo Yoon Young Il Lee |
container_volume |
9 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Nguyen Ngoc Nam |
doi_str_mv |
10.1109/ACCESS.2021.3102628 |
author2-role |
verfasserin |
title_sort |
disturbance observer-based robust model predictive control for a voltage sensorless grid-connected inverter with an lcl filter |
callnumber |
TK1-9971 |
title_auth |
Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
abstract |
This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. |
abstractGer |
This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. |
abstract_unstemmed |
This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter |
url |
https://doi.org/10.1109/ACCESS.2021.3102628 https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec https://ieeexplore.ieee.org/document/9507463/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Ngoc-Duc Nguyen Changwoo Yoon Young Il Lee |
author2Str |
Ngoc-Duc Nguyen Changwoo Yoon Young Il Lee |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2021.3102628 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:44:26.661Z |
_version_ |
1803588328922021888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071341587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309101256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2021.3102628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071341587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce53847ad3af43b3bebbcee6bc4315ec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nguyen Ngoc Nam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Disturbance Observer-Based Robust Model Predictive Control for a Voltage Sensorless Grid-Connected Inverter With an LCL Filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a disturbance observer-based robust model predictive control (MPC) for a voltage sensorless grid-connected inverter with an inductive-capacitive-inductive (LCL) filter. A full-state estimator and a grid voltage observer are designed to reduce the number of sensors. A lumped disturbance observer, considering the parameter mismatch along with the grid impedance variation, is also designed to eliminate the steady-state error. A cost function, which consists of the error state and control input, is employed in the MPC design. Based on the Lyapunov stability, the full-state observer, voltage estimation, lumped disturbance observer, and the robust controller gains are obtained by solving an optimization problem based on linear matrix inequality (LMI). A frequency response analysis of the entire system is conducted to verify the reference tracking and disturbance rejection outcomes. As a result, the state and grid voltage observer outcomes converge to the actual values as rapidly as possible. The effectiveness of the proposed control method is demonstrated in comparison with the proportional-integral (PI) approach and with a controller recently proposed in the literature. Simulation and experimental results are presented to verify the effectiveness of the proposed method under LCL parameter uncertainties and grid impedance variations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensorless model predictive control (MPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">disturbance observer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">three-phase inverters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inductive-capacitive-inductive (LCL)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ngoc-Duc Nguyen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changwoo Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Young Il Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">9(2021), Seite 109793-109805</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109793-109805</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2021.3102628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce53847ad3af43b3bebbcee6bc4315ec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9507463/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2021</subfield><subfield code="h">109793-109805</subfield></datafield></record></collection>
|
score |
7.3987885 |