Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials
Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density fu...
Ausführliche Beschreibung
Autor*in: |
Qian Liu [verfasserIn] Xiaochen Lin [verfasserIn] Xinlan Cao [verfasserIn] Peng Song [verfasserIn] Fengcai Ma [verfasserIn] Yuanzuo Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
density functional theory (DFT) |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 8(2018), 9, p 1461 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2018 ; number:9, p 1461 |
Links: |
---|
DOI / URN: |
10.3390/app8091461 |
---|
Katalog-ID: |
DOAJ071417753 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071417753 | ||
003 | DE-627 | ||
005 | 20230309101639.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app8091461 |2 doi | |
035 | |a (DE-627)DOAJ071417753 | ||
035 | |a (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Qian Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. | ||
650 | 4 | |a solar cells | |
650 | 4 | |a density functional theory (DFT) | |
650 | 4 | |a benzothiadiazole-based organic molecules | |
650 | 4 | |a hole transport materials (HTM) | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Xiaochen Lin |e verfasserin |4 aut | |
700 | 0 | |a Xinlan Cao |e verfasserin |4 aut | |
700 | 0 | |a Peng Song |e verfasserin |4 aut | |
700 | 0 | |a Fengcai Ma |e verfasserin |4 aut | |
700 | 0 | |a Yuanzuo Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 8(2018), 9, p 1461 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2018 |g number:9, p 1461 |
856 | 4 | 0 | |u https://doi.org/10.3390/app8091461 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2076-3417/8/9/1461 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2018 |e 9, p 1461 |
author_variant |
q l ql x l xl x c xc p s ps f m fm y l yl |
---|---|
matchkey_str |
article:20763417:2018----::oeuacnrlightasotrprisobnohaizlbsd |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TA |
publishDate |
2018 |
allfields |
10.3390/app8091461 doi (DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Qian Liu verfasserin aut Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xiaochen Lin verfasserin aut Xinlan Cao verfasserin aut Peng Song verfasserin aut Fengcai Ma verfasserin aut Yuanzuo Li verfasserin aut In Applied Sciences MDPI AG, 2012 8(2018), 9, p 1461 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:8 year:2018 number:9, p 1461 https://doi.org/10.3390/app8091461 kostenfrei https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf kostenfrei http://www.mdpi.com/2076-3417/8/9/1461 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 9, p 1461 |
spelling |
10.3390/app8091461 doi (DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Qian Liu verfasserin aut Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xiaochen Lin verfasserin aut Xinlan Cao verfasserin aut Peng Song verfasserin aut Fengcai Ma verfasserin aut Yuanzuo Li verfasserin aut In Applied Sciences MDPI AG, 2012 8(2018), 9, p 1461 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:8 year:2018 number:9, p 1461 https://doi.org/10.3390/app8091461 kostenfrei https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf kostenfrei http://www.mdpi.com/2076-3417/8/9/1461 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 9, p 1461 |
allfields_unstemmed |
10.3390/app8091461 doi (DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Qian Liu verfasserin aut Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xiaochen Lin verfasserin aut Xinlan Cao verfasserin aut Peng Song verfasserin aut Fengcai Ma verfasserin aut Yuanzuo Li verfasserin aut In Applied Sciences MDPI AG, 2012 8(2018), 9, p 1461 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:8 year:2018 number:9, p 1461 https://doi.org/10.3390/app8091461 kostenfrei https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf kostenfrei http://www.mdpi.com/2076-3417/8/9/1461 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 9, p 1461 |
allfieldsGer |
10.3390/app8091461 doi (DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Qian Liu verfasserin aut Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xiaochen Lin verfasserin aut Xinlan Cao verfasserin aut Peng Song verfasserin aut Fengcai Ma verfasserin aut Yuanzuo Li verfasserin aut In Applied Sciences MDPI AG, 2012 8(2018), 9, p 1461 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:8 year:2018 number:9, p 1461 https://doi.org/10.3390/app8091461 kostenfrei https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf kostenfrei http://www.mdpi.com/2076-3417/8/9/1461 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 9, p 1461 |
allfieldsSound |
10.3390/app8091461 doi (DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Qian Liu verfasserin aut Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xiaochen Lin verfasserin aut Xinlan Cao verfasserin aut Peng Song verfasserin aut Fengcai Ma verfasserin aut Yuanzuo Li verfasserin aut In Applied Sciences MDPI AG, 2012 8(2018), 9, p 1461 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:8 year:2018 number:9, p 1461 https://doi.org/10.3390/app8091461 kostenfrei https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf kostenfrei http://www.mdpi.com/2076-3417/8/9/1461 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2018 9, p 1461 |
language |
English |
source |
In Applied Sciences 8(2018), 9, p 1461 volume:8 year:2018 number:9, p 1461 |
sourceStr |
In Applied Sciences 8(2018), 9, p 1461 volume:8 year:2018 number:9, p 1461 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Qian Liu @@aut@@ Xiaochen Lin @@aut@@ Xinlan Cao @@aut@@ Peng Song @@aut@@ Fengcai Ma @@aut@@ Yuanzuo Li @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ071417753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071417753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309101639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app8091461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071417753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5&ndash;Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density functional theory (DFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">benzothiadiazole-based organic molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hole transport materials (HTM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaochen Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinlan Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fengcai Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanzuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2018), 9, p 1461</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:9, p 1461</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app8091461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2076-3417/8/9/1461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">9, p 1461</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Qian Liu |
spellingShingle |
Qian Liu misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc solar cells misc density functional theory (DFT) misc benzothiadiazole-based organic molecules misc hole transport materials (HTM) misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
authorStr |
Qian Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials solar cells density functional theory (DFT) benzothiadiazole-based organic molecules hole transport materials (HTM) |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc solar cells misc density functional theory (DFT) misc benzothiadiazole-based organic molecules misc hole transport materials (HTM) misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc solar cells misc density functional theory (DFT) misc benzothiadiazole-based organic molecules misc hole transport materials (HTM) misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc solar cells misc density functional theory (DFT) misc benzothiadiazole-based organic molecules misc hole transport materials (HTM) misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
ctrlnum |
(DE-627)DOAJ071417753 (DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf |
title_full |
Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
author_sort |
Qian Liu |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Qian Liu Xiaochen Lin Xinlan Cao Peng Song Fengcai Ma Yuanzuo Li |
container_volume |
8 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Qian Liu |
doi_str_mv |
10.3390/app8091461 |
author2-role |
verfasserin |
title_sort |
molecular controlling the transport properties for benzothiadiazole-based hole transport materials |
callnumber |
TA1-2040 |
title_auth |
Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
abstract |
Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. |
abstractGer |
Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. |
abstract_unstemmed |
Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5–Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1461 |
title_short |
Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials |
url |
https://doi.org/10.3390/app8091461 https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf http://www.mdpi.com/2076-3417/8/9/1461 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Xiaochen Lin Xinlan Cao Peng Song Fengcai Ma Yuanzuo Li |
author2Str |
Xiaochen Lin Xinlan Cao Peng Song Fengcai Ma Yuanzuo Li |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app8091461 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T20:09:44.914Z |
_version_ |
1803589920925679616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071417753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309101639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app8091461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071417753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJdab8a63c60284e9b9dde9bf02a8992cf</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qian Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular Controlling the Transport Properties for Benzothiadiazole-Based Hole Transport Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three experimental hole transport materials containing fluorine-substituted benzothiadiazole-based organic molecules (Jy5&ndash;Jy7) have been studied to explore the relationship between photoelectric performances and the core structures of hole transport materials (HTM). By employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT), it was found that the substitution of the hydrogen atom by fluorine atom in the core structure can significantly boost the hole mobility; and the replacement of core structure from electron-withdrawing group to electron-donating group has strong influence on the increment of LUMO level energy, ability to preventing electron-backflow, molecular stability and oscillator strength of HTM molecules. We hope our investigation can provide theoretical guidance to reasonably optimize HTM molecules for perovskite solar cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density functional theory (DFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">benzothiadiazole-based organic molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hole transport materials (HTM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaochen Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinlan Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fengcai Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuanzuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">8(2018), 9, p 1461</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:9, p 1461</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app8091461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/dab8a63c60284e9b9dde9bf02a8992cf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2076-3417/8/9/1461</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2018</subfield><subfield code="e">9, p 1461</subfield></datafield></record></collection>
|
score |
7.401602 |