Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems
Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the...
Ausführliche Beschreibung
Autor*in: |
Meng Xiao [verfasserIn] Z. Q. Zhang [verfasserIn] C. T. Chan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Übergeordnetes Werk: |
In: Physical Review X - American Physical Society, 2011, 4(2014), 2, p 021017 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2014 ; number:2, p 021017 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1103/PhysRevX.4.021017 |
---|
Katalog-ID: |
DOAJ071532129 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071532129 | ||
003 | DE-627 | ||
005 | 20230309102207.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevX.4.021017 |2 doi | |
035 | |a (DE-627)DOAJ071532129 | ||
035 | |a (DE-599)DOAJ7b365731a6a54272a426961443de9c25 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Meng Xiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Z. Q. Zhang |e verfasserin |4 aut | |
700 | 0 | |a C. T. Chan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Physical Review X |d American Physical Society, 2011 |g 4(2014), 2, p 021017 |w (DE-627)666214115 |w (DE-600)2622565-7 |x 21603308 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2014 |g number:2, p 021017 |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevX.4.021017 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7b365731a6a54272a426961443de9c25 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevX.4.021017 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevX.4.021017 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2160-3308 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2014 |e 2, p 021017 |
author_variant |
m x mx z z zz c c cc |
---|---|
matchkey_str |
article:21603308:2014----::ufcipdnenblbngoerchssnnd |
hierarchy_sort_str |
2014 |
callnumber-subject-code |
QC |
publishDate |
2014 |
allfields |
10.1103/PhysRevX.4.021017 doi (DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 DE-627 ger DE-627 rakwb eng QC1-999 Meng Xiao verfasserin aut Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. Physics Z. Q. Zhang verfasserin aut C. T. Chan verfasserin aut In Physical Review X American Physical Society, 2011 4(2014), 2, p 021017 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:4 year:2014 number:2, p 021017 https://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/article/7b365731a6a54272a426961443de9c25 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 2, p 021017 |
spelling |
10.1103/PhysRevX.4.021017 doi (DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 DE-627 ger DE-627 rakwb eng QC1-999 Meng Xiao verfasserin aut Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. Physics Z. Q. Zhang verfasserin aut C. T. Chan verfasserin aut In Physical Review X American Physical Society, 2011 4(2014), 2, p 021017 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:4 year:2014 number:2, p 021017 https://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/article/7b365731a6a54272a426961443de9c25 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 2, p 021017 |
allfields_unstemmed |
10.1103/PhysRevX.4.021017 doi (DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 DE-627 ger DE-627 rakwb eng QC1-999 Meng Xiao verfasserin aut Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. Physics Z. Q. Zhang verfasserin aut C. T. Chan verfasserin aut In Physical Review X American Physical Society, 2011 4(2014), 2, p 021017 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:4 year:2014 number:2, p 021017 https://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/article/7b365731a6a54272a426961443de9c25 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 2, p 021017 |
allfieldsGer |
10.1103/PhysRevX.4.021017 doi (DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 DE-627 ger DE-627 rakwb eng QC1-999 Meng Xiao verfasserin aut Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. Physics Z. Q. Zhang verfasserin aut C. T. Chan verfasserin aut In Physical Review X American Physical Society, 2011 4(2014), 2, p 021017 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:4 year:2014 number:2, p 021017 https://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/article/7b365731a6a54272a426961443de9c25 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 2, p 021017 |
allfieldsSound |
10.1103/PhysRevX.4.021017 doi (DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 DE-627 ger DE-627 rakwb eng QC1-999 Meng Xiao verfasserin aut Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. Physics Z. Q. Zhang verfasserin aut C. T. Chan verfasserin aut In Physical Review X American Physical Society, 2011 4(2014), 2, p 021017 (DE-627)666214115 (DE-600)2622565-7 21603308 nnns volume:4 year:2014 number:2, p 021017 https://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/article/7b365731a6a54272a426961443de9c25 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei http://doi.org/10.1103/PhysRevX.4.021017 kostenfrei https://doaj.org/toc/2160-3308 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2014 2, p 021017 |
language |
English |
source |
In Physical Review X 4(2014), 2, p 021017 volume:4 year:2014 number:2, p 021017 |
sourceStr |
In Physical Review X 4(2014), 2, p 021017 volume:4 year:2014 number:2, p 021017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
Physical Review X |
authorswithroles_txt_mv |
Meng Xiao @@aut@@ Z. Q. Zhang @@aut@@ C. T. Chan @@aut@@ |
publishDateDaySort_date |
2014-01-01T00:00:00Z |
hierarchy_top_id |
666214115 |
id |
DOAJ071532129 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071532129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309102207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevX.4.021017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071532129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7b365731a6a54272a426961443de9c25</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Z. Q. Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. T. Chan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review X</subfield><subfield code="d">American Physical Society, 2011</subfield><subfield code="g">4(2014), 2, p 021017</subfield><subfield code="w">(DE-627)666214115</subfield><subfield code="w">(DE-600)2622565-7</subfield><subfield code="x">21603308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2, p 021017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7b365731a6a54272a426961443de9c25</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-3308</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2014</subfield><subfield code="e">2, p 021017</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Meng Xiao |
spellingShingle |
Meng Xiao misc QC1-999 misc Physics Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
authorStr |
Meng Xiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)666214115 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21603308 |
topic_title |
QC1-999 Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physical Review X |
hierarchy_parent_id |
666214115 |
hierarchy_top_title |
Physical Review X |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)666214115 (DE-600)2622565-7 |
title |
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
ctrlnum |
(DE-627)DOAJ071532129 (DE-599)DOAJ7b365731a6a54272a426961443de9c25 |
title_full |
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
author_sort |
Meng Xiao |
journal |
Physical Review X |
journalStr |
Physical Review X |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Meng Xiao Z. Q. Zhang C. T. Chan |
container_volume |
4 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Meng Xiao |
doi_str_mv |
10.1103/PhysRevX.4.021017 |
author2-role |
verfasserin |
title_sort |
surface impedance and bulk band geometric phases in one-dimensional systems |
callnumber |
QC1-999 |
title_auth |
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
abstract |
Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. |
abstractGer |
Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. |
abstract_unstemmed |
Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 021017 |
title_short |
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems |
url |
https://doi.org/10.1103/PhysRevX.4.021017 https://doaj.org/article/7b365731a6a54272a426961443de9c25 http://doi.org/10.1103/PhysRevX.4.021017 https://doaj.org/toc/2160-3308 |
remote_bool |
true |
author2 |
Z. Q. Zhang C. T. Chan |
author2Str |
Z. Q. Zhang C. T. Chan |
ppnlink |
666214115 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1103/PhysRevX.4.021017 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T20:46:50.024Z |
_version_ |
1803592254122622976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071532129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309102207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevX.4.021017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071532129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7b365731a6a54272a426961443de9c25</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs). For example, the condition of an interface state formation in the interfacial region of two different one-dimensional PCs is simplyZ_{SL}+Z_{SR}=0, where Z_{SL}(Z_{SR})is the surface impedance of the semi-infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical (Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the Brillouin zone. Our results provide new insights into the relationship between surface scattering properties, the bulk band properties, and the formation of interface states, which in turn can enable the design of systems with interface states in a rational manner.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Z. Q. Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">C. T. Chan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review X</subfield><subfield code="d">American Physical Society, 2011</subfield><subfield code="g">4(2014), 2, p 021017</subfield><subfield code="w">(DE-627)666214115</subfield><subfield code="w">(DE-600)2622565-7</subfield><subfield code="x">21603308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2, p 021017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7b365731a6a54272a426961443de9c25</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevX.4.021017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2160-3308</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2014</subfield><subfield code="e">2, p 021017</subfield></datafield></record></collection>
|
score |
7.4021244 |