Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation
To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studi...
Ausführliche Beschreibung
Autor*in: |
Muhammad Zubair [verfasserIn] Estelle Marie M. Vanhaecke [verfasserIn] Ingeborg-Helene Svenum [verfasserIn] Magnus Rønning [verfasserIn] Jia Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Green Energy & Environment - KeAi Communications Co., Ltd., 2017, 5(2020), 4, Seite 461-472 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2020 ; number:4 ; pages:461-472 |
Links: |
---|
DOI / URN: |
10.1016/j.gee.2020.10.017 |
---|
Katalog-ID: |
DOAJ071691057 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071691057 | ||
003 | DE-627 | ||
005 | 20230503062047.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gee.2020.10.017 |2 doi | |
035 | |a (DE-627)DOAJ071691057 | ||
035 | |a (DE-599)DOAJ1684671a33974d34905f2044c893d541 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ807-830 | |
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Muhammad Zubair |e verfasserin |4 aut | |
245 | 1 | 0 | |a Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. | ||
650 | 4 | |a C-doped CdS@G | |
650 | 4 | |a Core-shell nanostructure | |
650 | 4 | |a Photocatalytic H2 generation | |
650 | 4 | |a Graphene | |
650 | 4 | |a Carbon doping in CdS | |
650 | 4 | |a Bandgap narrowing | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Ecology | |
700 | 0 | |a Estelle Marie M. Vanhaecke |e verfasserin |4 aut | |
700 | 0 | |a Ingeborg-Helene Svenum |e verfasserin |4 aut | |
700 | 0 | |a Magnus Rønning |e verfasserin |4 aut | |
700 | 0 | |a Jia Yang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Green Energy & Environment |d KeAi Communications Co., Ltd., 2017 |g 5(2020), 4, Seite 461-472 |w (DE-627)880047542 |w (DE-600)2884200-5 |x 24680257 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2020 |g number:4 |g pages:461-472 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.gee.2020.10.017 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1684671a33974d34905f2044c893d541 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2468025720301746 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2468-0257 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2020 |e 4 |h 461-472 |
author_variant |
m z mz e m m v emmv i h s ihs m r mr j y jy |
---|---|
matchkey_str |
article:24680257:2020----::oehlprilsfdpddadrpeenbeeafeapocfrfiin |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TJ |
publishDate |
2020 |
allfields |
10.1016/j.gee.2020.10.017 doi (DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Muhammad Zubair verfasserin aut Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology Estelle Marie M. Vanhaecke verfasserin aut Ingeborg-Helene Svenum verfasserin aut Magnus Rønning verfasserin aut Jia Yang verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 5(2020), 4, Seite 461-472 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:5 year:2020 number:4 pages:461-472 https://doi.org/10.1016/j.gee.2020.10.017 kostenfrei https://doaj.org/article/1684671a33974d34905f2044c893d541 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025720301746 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 461-472 |
spelling |
10.1016/j.gee.2020.10.017 doi (DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Muhammad Zubair verfasserin aut Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology Estelle Marie M. Vanhaecke verfasserin aut Ingeborg-Helene Svenum verfasserin aut Magnus Rønning verfasserin aut Jia Yang verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 5(2020), 4, Seite 461-472 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:5 year:2020 number:4 pages:461-472 https://doi.org/10.1016/j.gee.2020.10.017 kostenfrei https://doaj.org/article/1684671a33974d34905f2044c893d541 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025720301746 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 461-472 |
allfields_unstemmed |
10.1016/j.gee.2020.10.017 doi (DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Muhammad Zubair verfasserin aut Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology Estelle Marie M. Vanhaecke verfasserin aut Ingeborg-Helene Svenum verfasserin aut Magnus Rønning verfasserin aut Jia Yang verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 5(2020), 4, Seite 461-472 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:5 year:2020 number:4 pages:461-472 https://doi.org/10.1016/j.gee.2020.10.017 kostenfrei https://doaj.org/article/1684671a33974d34905f2044c893d541 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025720301746 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 461-472 |
allfieldsGer |
10.1016/j.gee.2020.10.017 doi (DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Muhammad Zubair verfasserin aut Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology Estelle Marie M. Vanhaecke verfasserin aut Ingeborg-Helene Svenum verfasserin aut Magnus Rønning verfasserin aut Jia Yang verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 5(2020), 4, Seite 461-472 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:5 year:2020 number:4 pages:461-472 https://doi.org/10.1016/j.gee.2020.10.017 kostenfrei https://doaj.org/article/1684671a33974d34905f2044c893d541 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025720301746 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 461-472 |
allfieldsSound |
10.1016/j.gee.2020.10.017 doi (DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 DE-627 ger DE-627 rakwb eng TJ807-830 QH540-549.5 Muhammad Zubair verfasserin aut Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology Estelle Marie M. Vanhaecke verfasserin aut Ingeborg-Helene Svenum verfasserin aut Magnus Rønning verfasserin aut Jia Yang verfasserin aut In Green Energy & Environment KeAi Communications Co., Ltd., 2017 5(2020), 4, Seite 461-472 (DE-627)880047542 (DE-600)2884200-5 24680257 nnns volume:5 year:2020 number:4 pages:461-472 https://doi.org/10.1016/j.gee.2020.10.017 kostenfrei https://doaj.org/article/1684671a33974d34905f2044c893d541 kostenfrei http://www.sciencedirect.com/science/article/pii/S2468025720301746 kostenfrei https://doaj.org/toc/2468-0257 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2020 4 461-472 |
language |
English |
source |
In Green Energy & Environment 5(2020), 4, Seite 461-472 volume:5 year:2020 number:4 pages:461-472 |
sourceStr |
In Green Energy & Environment 5(2020), 4, Seite 461-472 volume:5 year:2020 number:4 pages:461-472 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing Renewable energy sources Ecology |
isfreeaccess_bool |
true |
container_title |
Green Energy & Environment |
authorswithroles_txt_mv |
Muhammad Zubair @@aut@@ Estelle Marie M. Vanhaecke @@aut@@ Ingeborg-Helene Svenum @@aut@@ Magnus Rønning @@aut@@ Jia Yang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
880047542 |
id |
DOAJ071691057 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071691057</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062047.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gee.2020.10.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071691057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1684671a33974d34905f2044c893d541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammad Zubair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-doped CdS@G</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-shell nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic H2 generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon doping in CdS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandgap narrowing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Estelle Marie M. Vanhaecke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ingeborg-Helene Svenum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magnus Rønning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Green Energy & Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">5(2020), 4, Seite 461-472</subfield><subfield code="w">(DE-627)880047542</subfield><subfield code="w">(DE-600)2884200-5</subfield><subfield code="x">24680257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:461-472</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gee.2020.10.017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1684671a33974d34905f2044c893d541</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468025720301746</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">461-472</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Muhammad Zubair |
spellingShingle |
Muhammad Zubair misc TJ807-830 misc QH540-549.5 misc C-doped CdS@G misc Core-shell nanostructure misc Photocatalytic H2 generation misc Graphene misc Carbon doping in CdS misc Bandgap narrowing misc Renewable energy sources misc Ecology Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
authorStr |
Muhammad Zubair |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)880047542 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ807-830 |
illustrated |
Not Illustrated |
issn |
24680257 |
topic_title |
TJ807-830 QH540-549.5 Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation C-doped CdS@G Core-shell nanostructure Photocatalytic H2 generation Graphene Carbon doping in CdS Bandgap narrowing |
topic |
misc TJ807-830 misc QH540-549.5 misc C-doped CdS@G misc Core-shell nanostructure misc Photocatalytic H2 generation misc Graphene misc Carbon doping in CdS misc Bandgap narrowing misc Renewable energy sources misc Ecology |
topic_unstemmed |
misc TJ807-830 misc QH540-549.5 misc C-doped CdS@G misc Core-shell nanostructure misc Photocatalytic H2 generation misc Graphene misc Carbon doping in CdS misc Bandgap narrowing misc Renewable energy sources misc Ecology |
topic_browse |
misc TJ807-830 misc QH540-549.5 misc C-doped CdS@G misc Core-shell nanostructure misc Photocatalytic H2 generation misc Graphene misc Carbon doping in CdS misc Bandgap narrowing misc Renewable energy sources misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Green Energy & Environment |
hierarchy_parent_id |
880047542 |
hierarchy_top_title |
Green Energy & Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)880047542 (DE-600)2884200-5 |
title |
Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
ctrlnum |
(DE-627)DOAJ071691057 (DE-599)DOAJ1684671a33974d34905f2044c893d541 |
title_full |
Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
author_sort |
Muhammad Zubair |
journal |
Green Energy & Environment |
journalStr |
Green Energy & Environment |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
461 |
author_browse |
Muhammad Zubair Estelle Marie M. Vanhaecke Ingeborg-Helene Svenum Magnus Rønning Jia Yang |
container_volume |
5 |
class |
TJ807-830 QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Muhammad Zubair |
doi_str_mv |
10.1016/j.gee.2020.10.017 |
author2-role |
verfasserin |
title_sort |
core-shell particles of c-doped cds and graphene: a noble metal-free approach for efficient photocatalytic h2 generation |
callnumber |
TJ807-830 |
title_auth |
Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
abstract |
To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. |
abstractGer |
To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. |
abstract_unstemmed |
To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation |
url |
https://doi.org/10.1016/j.gee.2020.10.017 https://doaj.org/article/1684671a33974d34905f2044c893d541 http://www.sciencedirect.com/science/article/pii/S2468025720301746 https://doaj.org/toc/2468-0257 |
remote_bool |
true |
author2 |
Estelle Marie M. Vanhaecke Ingeborg-Helene Svenum Magnus Rønning Jia Yang |
author2Str |
Estelle Marie M. Vanhaecke Ingeborg-Helene Svenum Magnus Rønning Jia Yang |
ppnlink |
880047542 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.gee.2020.10.017 |
callnumber-a |
TJ807-830 |
up_date |
2024-07-03T21:40:03.079Z |
_version_ |
1803595602286608384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071691057</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062047.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gee.2020.10.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071691057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1684671a33974d34905f2044c893d541</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Muhammad Zubair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To achieve efficient photocatalytic H2 generation from water using earth-abundant and cost-effective materials, a simple synthesis method for carbon-doped CdS particles wrapped with graphene (C-doped CdSG) is reported. The doping effect and the application of graphene as co-catalyst for CdS is studied for photocatalytic H2 generation. The most active sample consists of CdS and graphene (CdS-0.15G) exhibits promising photocatalytic activity, producing 3.12 mmol g−1 h−1 of H2 under simulated solar light which is ~4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency (AQY) of 11.7%. The enhanced photocatalytic activity for H2 generation is associated to the narrowing of the bandgap, enhanced light absorption, fast interfacial charge transfer, and higher carrier density (ND) in C-doped CdS@G samples. This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles. After stability test, the spent catalysts sample was also characterized to investigate the nanostructure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C-doped CdS@G</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-shell nanostructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic H2 generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon doping in CdS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandgap narrowing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Estelle Marie M. Vanhaecke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ingeborg-Helene Svenum</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Magnus Rønning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Green Energy & Environment</subfield><subfield code="d">KeAi Communications Co., Ltd., 2017</subfield><subfield code="g">5(2020), 4, Seite 461-472</subfield><subfield code="w">(DE-627)880047542</subfield><subfield code="w">(DE-600)2884200-5</subfield><subfield code="x">24680257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:461-472</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.gee.2020.10.017</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1684671a33974d34905f2044c893d541</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2468025720301746</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2468-0257</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="h">461-472</subfield></datafield></record></collection>
|
score |
7.400899 |