Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix
The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin...
Ausführliche Beschreibung
Autor*in: |
Mengdan Wei [verfasserIn] Huabao Zheng [verfasserIn] Tainan Zeng [verfasserIn] Jian Yang [verfasserIn] Xiaobo Fang [verfasserIn] Cheng Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Water Science and Technology - IWA Publishing, 2021, 84(2021), 8, Seite 1896-1907 |
---|---|
Übergeordnetes Werk: |
volume:84 ; year:2021 ; number:8 ; pages:1896-1907 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2166/wst.2021.374 |
---|
Katalog-ID: |
DOAJ071735429 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071735429 | ||
003 | DE-627 | ||
005 | 20230309103223.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2166/wst.2021.374 |2 doi | |
035 | |a (DE-627)DOAJ071735429 | ||
035 | |a (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD1-1066 | |
100 | 0 | |a Mengdan Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; | ||
650 | 4 | |a adsorption performance | |
650 | 4 | |a antibiotics | |
650 | 4 | |a bacterial cellulose | |
650 | 4 | |a carbon aerogel | |
650 | 4 | |a regeneration | |
650 | 4 | |a wastewater treatment | |
653 | 0 | |a Environmental technology. Sanitary engineering | |
700 | 0 | |a Huabao Zheng |e verfasserin |4 aut | |
700 | 0 | |a Tainan Zeng |e verfasserin |4 aut | |
700 | 0 | |a Jian Yang |e verfasserin |4 aut | |
700 | 0 | |a Xiaobo Fang |e verfasserin |4 aut | |
700 | 0 | |a Cheng Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Water Science and Technology |d IWA Publishing, 2021 |g 84(2021), 8, Seite 1896-1907 |w (DE-627)319406539 |w (DE-600)2024780-1 |x 19969732 |7 nnns |
773 | 1 | 8 | |g volume:84 |g year:2021 |g number:8 |g pages:1896-1907 |
856 | 4 | 0 | |u https://doi.org/10.2166/wst.2021.374 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 |z kostenfrei |
856 | 4 | 0 | |u http://wst.iwaponline.com/content/84/8/1896 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0273-1223 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-9732 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_4046 | ||
951 | |a AR | ||
952 | |d 84 |j 2021 |e 8 |h 1896-1907 |
author_variant |
m w mw h z hz t z tz j y jy x f xf c z cz |
---|---|
matchkey_str |
article:19969732:2021----::oosabneoedrvdrmatracluoeihrmnnptniloefceteoao |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TD |
publishDate |
2021 |
allfields |
10.2166/wst.2021.374 doi (DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 DE-627 ger DE-627 rakwb eng TD1-1066 Mengdan Wei verfasserin aut Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering Huabao Zheng verfasserin aut Tainan Zeng verfasserin aut Jian Yang verfasserin aut Xiaobo Fang verfasserin aut Cheng Zhang verfasserin aut In Water Science and Technology IWA Publishing, 2021 84(2021), 8, Seite 1896-1907 (DE-627)319406539 (DE-600)2024780-1 19969732 nnns volume:84 year:2021 number:8 pages:1896-1907 https://doi.org/10.2166/wst.2021.374 kostenfrei https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 kostenfrei http://wst.iwaponline.com/content/84/8/1896 kostenfrei https://doaj.org/toc/0273-1223 Journal toc kostenfrei https://doaj.org/toc/1996-9732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 AR 84 2021 8 1896-1907 |
spelling |
10.2166/wst.2021.374 doi (DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 DE-627 ger DE-627 rakwb eng TD1-1066 Mengdan Wei verfasserin aut Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering Huabao Zheng verfasserin aut Tainan Zeng verfasserin aut Jian Yang verfasserin aut Xiaobo Fang verfasserin aut Cheng Zhang verfasserin aut In Water Science and Technology IWA Publishing, 2021 84(2021), 8, Seite 1896-1907 (DE-627)319406539 (DE-600)2024780-1 19969732 nnns volume:84 year:2021 number:8 pages:1896-1907 https://doi.org/10.2166/wst.2021.374 kostenfrei https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 kostenfrei http://wst.iwaponline.com/content/84/8/1896 kostenfrei https://doaj.org/toc/0273-1223 Journal toc kostenfrei https://doaj.org/toc/1996-9732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 AR 84 2021 8 1896-1907 |
allfields_unstemmed |
10.2166/wst.2021.374 doi (DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 DE-627 ger DE-627 rakwb eng TD1-1066 Mengdan Wei verfasserin aut Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering Huabao Zheng verfasserin aut Tainan Zeng verfasserin aut Jian Yang verfasserin aut Xiaobo Fang verfasserin aut Cheng Zhang verfasserin aut In Water Science and Technology IWA Publishing, 2021 84(2021), 8, Seite 1896-1907 (DE-627)319406539 (DE-600)2024780-1 19969732 nnns volume:84 year:2021 number:8 pages:1896-1907 https://doi.org/10.2166/wst.2021.374 kostenfrei https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 kostenfrei http://wst.iwaponline.com/content/84/8/1896 kostenfrei https://doaj.org/toc/0273-1223 Journal toc kostenfrei https://doaj.org/toc/1996-9732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 AR 84 2021 8 1896-1907 |
allfieldsGer |
10.2166/wst.2021.374 doi (DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 DE-627 ger DE-627 rakwb eng TD1-1066 Mengdan Wei verfasserin aut Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering Huabao Zheng verfasserin aut Tainan Zeng verfasserin aut Jian Yang verfasserin aut Xiaobo Fang verfasserin aut Cheng Zhang verfasserin aut In Water Science and Technology IWA Publishing, 2021 84(2021), 8, Seite 1896-1907 (DE-627)319406539 (DE-600)2024780-1 19969732 nnns volume:84 year:2021 number:8 pages:1896-1907 https://doi.org/10.2166/wst.2021.374 kostenfrei https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 kostenfrei http://wst.iwaponline.com/content/84/8/1896 kostenfrei https://doaj.org/toc/0273-1223 Journal toc kostenfrei https://doaj.org/toc/1996-9732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 AR 84 2021 8 1896-1907 |
allfieldsSound |
10.2166/wst.2021.374 doi (DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 DE-627 ger DE-627 rakwb eng TD1-1066 Mengdan Wei verfasserin aut Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering Huabao Zheng verfasserin aut Tainan Zeng verfasserin aut Jian Yang verfasserin aut Xiaobo Fang verfasserin aut Cheng Zhang verfasserin aut In Water Science and Technology IWA Publishing, 2021 84(2021), 8, Seite 1896-1907 (DE-627)319406539 (DE-600)2024780-1 19969732 nnns volume:84 year:2021 number:8 pages:1896-1907 https://doi.org/10.2166/wst.2021.374 kostenfrei https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 kostenfrei http://wst.iwaponline.com/content/84/8/1896 kostenfrei https://doaj.org/toc/0273-1223 Journal toc kostenfrei https://doaj.org/toc/1996-9732 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 AR 84 2021 8 1896-1907 |
language |
English |
source |
In Water Science and Technology 84(2021), 8, Seite 1896-1907 volume:84 year:2021 number:8 pages:1896-1907 |
sourceStr |
In Water Science and Technology 84(2021), 8, Seite 1896-1907 volume:84 year:2021 number:8 pages:1896-1907 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment Environmental technology. Sanitary engineering |
isfreeaccess_bool |
true |
container_title |
Water Science and Technology |
authorswithroles_txt_mv |
Mengdan Wei @@aut@@ Huabao Zheng @@aut@@ Tainan Zeng @@aut@@ Jian Yang @@aut@@ Xiaobo Fang @@aut@@ Cheng Zhang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
319406539 |
id |
DOAJ071735429 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071735429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309103223.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wst.2021.374</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071735429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengdan Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibiotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial cellulose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wastewater treatment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huabao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tainan Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaobo Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Science and Technology</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">84(2021), 8, Seite 1896-1907</subfield><subfield code="w">(DE-627)319406539</subfield><subfield code="w">(DE-600)2024780-1</subfield><subfield code="x">19969732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1896-1907</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wst.2021.374</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://wst.iwaponline.com/content/84/8/1896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0273-1223</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-9732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">1896-1907</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mengdan Wei |
spellingShingle |
Mengdan Wei misc TD1-1066 misc adsorption performance misc antibiotics misc bacterial cellulose misc carbon aerogel misc regeneration misc wastewater treatment misc Environmental technology. Sanitary engineering Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
authorStr |
Mengdan Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319406539 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD1-1066 |
illustrated |
Not Illustrated |
issn |
19969732 |
topic_title |
TD1-1066 Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix adsorption performance antibiotics bacterial cellulose carbon aerogel regeneration wastewater treatment |
topic |
misc TD1-1066 misc adsorption performance misc antibiotics misc bacterial cellulose misc carbon aerogel misc regeneration misc wastewater treatment misc Environmental technology. Sanitary engineering |
topic_unstemmed |
misc TD1-1066 misc adsorption performance misc antibiotics misc bacterial cellulose misc carbon aerogel misc regeneration misc wastewater treatment misc Environmental technology. Sanitary engineering |
topic_browse |
misc TD1-1066 misc adsorption performance misc antibiotics misc bacterial cellulose misc carbon aerogel misc regeneration misc wastewater treatment misc Environmental technology. Sanitary engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water Science and Technology |
hierarchy_parent_id |
319406539 |
hierarchy_top_title |
Water Science and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)319406539 (DE-600)2024780-1 |
title |
Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
ctrlnum |
(DE-627)DOAJ071735429 (DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05 |
title_full |
Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
author_sort |
Mengdan Wei |
journal |
Water Science and Technology |
journalStr |
Water Science and Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1896 |
author_browse |
Mengdan Wei Huabao Zheng Tainan Zeng Jian Yang Xiaobo Fang Cheng Zhang |
container_volume |
84 |
class |
TD1-1066 |
format_se |
Elektronische Aufsätze |
author-letter |
Mengdan Wei |
doi_str_mv |
10.2166/wst.2021.374 |
author2-role |
verfasserin |
title_sort |
porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
callnumber |
TD1-1066 |
title_auth |
Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
abstract |
The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; |
abstractGer |
The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; |
abstract_unstemmed |
The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.; |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2360 GBV_ILN_4046 |
container_issue |
8 |
title_short |
Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix |
url |
https://doi.org/10.2166/wst.2021.374 https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05 http://wst.iwaponline.com/content/84/8/1896 https://doaj.org/toc/0273-1223 https://doaj.org/toc/1996-9732 |
remote_bool |
true |
author2 |
Huabao Zheng Tainan Zeng Jian Yang Xiaobo Fang Cheng Zhang |
author2Str |
Huabao Zheng Tainan Zeng Jian Yang Xiaobo Fang Cheng Zhang |
ppnlink |
319406539 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2166/wst.2021.374 |
callnumber-a |
TD1-1066 |
up_date |
2024-07-03T21:55:03.205Z |
_version_ |
1803596546133983232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071735429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309103223.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2166/wst.2021.374</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071735429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3b7d775e8ce04c8ea5c4755b713d5d05</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD1-1066</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mengdan Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adsorption performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibiotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bacterial cellulose</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regeneration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wastewater treatment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental technology. Sanitary engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huabao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tainan Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaobo Fang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cheng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Water Science and Technology</subfield><subfield code="d">IWA Publishing, 2021</subfield><subfield code="g">84(2021), 8, Seite 1896-1907</subfield><subfield code="w">(DE-627)319406539</subfield><subfield code="w">(DE-600)2024780-1</subfield><subfield code="x">19969732</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1896-1907</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2166/wst.2021.374</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://wst.iwaponline.com/content/84/8/1896</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0273-1223</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-9732</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="h">1896-1907</subfield></datafield></record></collection>
|
score |
7.3985558 |