Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition
Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were i...
Ausführliche Beschreibung
Autor*in: |
Jia Zhou [verfasserIn] Shuangming Yue [verfasserIn] Benchu Xue [verfasserIn] Zhisheng Wang [verfasserIn] Lizhi Wang [verfasserIn] Quanhui Peng [verfasserIn] Bai Xue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Animal Science and Technology - Korean Society of Animal Sciences and Technology, 2014, 63(2021), 5, Seite 1126-1141 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2021 ; number:5 ; pages:1126-1141 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5187/jast.2021.e93 |
---|
Katalog-ID: |
DOAJ071850481 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ071850481 | ||
003 | DE-627 | ||
005 | 20230309103725.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5187/jast.2021.e93 |2 doi | |
035 | |a (DE-627)DOAJ071850481 | ||
035 | |a (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SF1-1100 | |
100 | 0 | |a Jia Zhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. | ||
650 | 4 | |a hyperthermia | |
650 | 4 | |a protein synthesis | |
650 | 4 | |a methionine | |
650 | 4 | |a cellular mechanism | |
653 | 0 | |a Animal culture | |
700 | 0 | |a Shuangming Yue |e verfasserin |4 aut | |
700 | 0 | |a Benchu Xue |e verfasserin |4 aut | |
700 | 0 | |a Zhisheng Wang |e verfasserin |4 aut | |
700 | 0 | |a Lizhi Wang |e verfasserin |4 aut | |
700 | 0 | |a Quanhui Peng |e verfasserin |4 aut | |
700 | 0 | |a Bai Xue |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Animal Science and Technology |d Korean Society of Animal Sciences and Technology, 2014 |g 63(2021), 5, Seite 1126-1141 |w (DE-627)788845659 |w (DE-600)2775231-8 |x 20550391 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2021 |g number:5 |g pages:1126-1141 |
856 | 4 | 0 | |u https://doi.org/10.5187/jast.2021.e93 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 |z kostenfrei |
856 | 4 | 0 | |u http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2672-0191 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2055-0391 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 63 |j 2021 |e 5 |h 1126-1141 |
author_variant |
j z jz s y sy b x bx z w zw l w lw q p qp b x bx |
---|---|
matchkey_str |
article:20550391:2021----::nacdupyfehoieeuaepoenyteiibvnmmaypteile |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
SF |
publishDate |
2021 |
allfields |
10.5187/jast.2021.e93 doi (DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 DE-627 ger DE-627 rakwb eng SF1-1100 Jia Zhou verfasserin aut Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. hyperthermia protein synthesis methionine cellular mechanism Animal culture Shuangming Yue verfasserin aut Benchu Xue verfasserin aut Zhisheng Wang verfasserin aut Lizhi Wang verfasserin aut Quanhui Peng verfasserin aut Bai Xue verfasserin aut In Journal of Animal Science and Technology Korean Society of Animal Sciences and Technology, 2014 63(2021), 5, Seite 1126-1141 (DE-627)788845659 (DE-600)2775231-8 20550391 nnns volume:63 year:2021 number:5 pages:1126-1141 https://doi.org/10.5187/jast.2021.e93 kostenfrei https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 kostenfrei http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 kostenfrei https://doaj.org/toc/2672-0191 Journal toc kostenfrei https://doaj.org/toc/2055-0391 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2021 5 1126-1141 |
spelling |
10.5187/jast.2021.e93 doi (DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 DE-627 ger DE-627 rakwb eng SF1-1100 Jia Zhou verfasserin aut Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. hyperthermia protein synthesis methionine cellular mechanism Animal culture Shuangming Yue verfasserin aut Benchu Xue verfasserin aut Zhisheng Wang verfasserin aut Lizhi Wang verfasserin aut Quanhui Peng verfasserin aut Bai Xue verfasserin aut In Journal of Animal Science and Technology Korean Society of Animal Sciences and Technology, 2014 63(2021), 5, Seite 1126-1141 (DE-627)788845659 (DE-600)2775231-8 20550391 nnns volume:63 year:2021 number:5 pages:1126-1141 https://doi.org/10.5187/jast.2021.e93 kostenfrei https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 kostenfrei http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 kostenfrei https://doaj.org/toc/2672-0191 Journal toc kostenfrei https://doaj.org/toc/2055-0391 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2021 5 1126-1141 |
allfields_unstemmed |
10.5187/jast.2021.e93 doi (DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 DE-627 ger DE-627 rakwb eng SF1-1100 Jia Zhou verfasserin aut Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. hyperthermia protein synthesis methionine cellular mechanism Animal culture Shuangming Yue verfasserin aut Benchu Xue verfasserin aut Zhisheng Wang verfasserin aut Lizhi Wang verfasserin aut Quanhui Peng verfasserin aut Bai Xue verfasserin aut In Journal of Animal Science and Technology Korean Society of Animal Sciences and Technology, 2014 63(2021), 5, Seite 1126-1141 (DE-627)788845659 (DE-600)2775231-8 20550391 nnns volume:63 year:2021 number:5 pages:1126-1141 https://doi.org/10.5187/jast.2021.e93 kostenfrei https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 kostenfrei http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 kostenfrei https://doaj.org/toc/2672-0191 Journal toc kostenfrei https://doaj.org/toc/2055-0391 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2021 5 1126-1141 |
allfieldsGer |
10.5187/jast.2021.e93 doi (DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 DE-627 ger DE-627 rakwb eng SF1-1100 Jia Zhou verfasserin aut Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. hyperthermia protein synthesis methionine cellular mechanism Animal culture Shuangming Yue verfasserin aut Benchu Xue verfasserin aut Zhisheng Wang verfasserin aut Lizhi Wang verfasserin aut Quanhui Peng verfasserin aut Bai Xue verfasserin aut In Journal of Animal Science and Technology Korean Society of Animal Sciences and Technology, 2014 63(2021), 5, Seite 1126-1141 (DE-627)788845659 (DE-600)2775231-8 20550391 nnns volume:63 year:2021 number:5 pages:1126-1141 https://doi.org/10.5187/jast.2021.e93 kostenfrei https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 kostenfrei http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 kostenfrei https://doaj.org/toc/2672-0191 Journal toc kostenfrei https://doaj.org/toc/2055-0391 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2021 5 1126-1141 |
allfieldsSound |
10.5187/jast.2021.e93 doi (DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 DE-627 ger DE-627 rakwb eng SF1-1100 Jia Zhou verfasserin aut Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. hyperthermia protein synthesis methionine cellular mechanism Animal culture Shuangming Yue verfasserin aut Benchu Xue verfasserin aut Zhisheng Wang verfasserin aut Lizhi Wang verfasserin aut Quanhui Peng verfasserin aut Bai Xue verfasserin aut In Journal of Animal Science and Technology Korean Society of Animal Sciences and Technology, 2014 63(2021), 5, Seite 1126-1141 (DE-627)788845659 (DE-600)2775231-8 20550391 nnns volume:63 year:2021 number:5 pages:1126-1141 https://doi.org/10.5187/jast.2021.e93 kostenfrei https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 kostenfrei http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 kostenfrei https://doaj.org/toc/2672-0191 Journal toc kostenfrei https://doaj.org/toc/2055-0391 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2021 5 1126-1141 |
language |
English |
source |
In Journal of Animal Science and Technology 63(2021), 5, Seite 1126-1141 volume:63 year:2021 number:5 pages:1126-1141 |
sourceStr |
In Journal of Animal Science and Technology 63(2021), 5, Seite 1126-1141 volume:63 year:2021 number:5 pages:1126-1141 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hyperthermia protein synthesis methionine cellular mechanism Animal culture |
isfreeaccess_bool |
true |
container_title |
Journal of Animal Science and Technology |
authorswithroles_txt_mv |
Jia Zhou @@aut@@ Shuangming Yue @@aut@@ Benchu Xue @@aut@@ Zhisheng Wang @@aut@@ Lizhi Wang @@aut@@ Quanhui Peng @@aut@@ Bai Xue @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
788845659 |
id |
DOAJ071850481 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071850481</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309103725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5187/jast.2021.e93</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071850481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jia Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperthermia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methionine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuangming Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benchu Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhisheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lizhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanhui Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bai Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Animal Science and Technology</subfield><subfield code="d">Korean Society of Animal Sciences and Technology, 2014</subfield><subfield code="g">63(2021), 5, Seite 1126-1141</subfield><subfield code="w">(DE-627)788845659</subfield><subfield code="w">(DE-600)2775231-8</subfield><subfield code="x">20550391</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1126-1141</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5187/jast.2021.e93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.ejast.org/archive/view_article?pid=jast-63-5-1126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2672-0191</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2055-0391</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">1126-1141</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Jia Zhou |
spellingShingle |
Jia Zhou misc SF1-1100 misc hyperthermia misc protein synthesis misc methionine misc cellular mechanism misc Animal culture Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
authorStr |
Jia Zhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)788845659 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SF1-1100 |
illustrated |
Not Illustrated |
issn |
20550391 |
topic_title |
SF1-1100 Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition hyperthermia protein synthesis methionine cellular mechanism |
topic |
misc SF1-1100 misc hyperthermia misc protein synthesis misc methionine misc cellular mechanism misc Animal culture |
topic_unstemmed |
misc SF1-1100 misc hyperthermia misc protein synthesis misc methionine misc cellular mechanism misc Animal culture |
topic_browse |
misc SF1-1100 misc hyperthermia misc protein synthesis misc methionine misc cellular mechanism misc Animal culture |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Animal Science and Technology |
hierarchy_parent_id |
788845659 |
hierarchy_top_title |
Journal of Animal Science and Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)788845659 (DE-600)2775231-8 |
title |
Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
ctrlnum |
(DE-627)DOAJ071850481 (DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2 |
title_full |
Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
author_sort |
Jia Zhou |
journal |
Journal of Animal Science and Technology |
journalStr |
Journal of Animal Science and Technology |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1126 |
author_browse |
Jia Zhou Shuangming Yue Benchu Xue Zhisheng Wang Lizhi Wang Quanhui Peng Bai Xue |
container_volume |
63 |
class |
SF1-1100 |
format_se |
Elektronische Aufsätze |
author-letter |
Jia Zhou |
doi_str_mv |
10.5187/jast.2021.e93 |
author2-role |
verfasserin |
title_sort |
enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
callnumber |
SF1-1100 |
title_auth |
Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
abstract |
Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. |
abstractGer |
Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. |
abstract_unstemmed |
Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition |
url |
https://doi.org/10.5187/jast.2021.e93 https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2 http://www.ejast.org/archive/view_article?pid=jast-63-5-1126 https://doaj.org/toc/2672-0191 https://doaj.org/toc/2055-0391 |
remote_bool |
true |
author2 |
Shuangming Yue Benchu Xue Zhisheng Wang Lizhi Wang Quanhui Peng Bai Xue |
author2Str |
Shuangming Yue Benchu Xue Zhisheng Wang Lizhi Wang Quanhui Peng Bai Xue |
ppnlink |
788845659 |
callnumber-subject |
SF - Animal Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5187/jast.2021.e93 |
callnumber-a |
SF1-1100 |
up_date |
2024-07-03T22:31:00.225Z |
_version_ |
1803598807950163968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ071850481</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309103725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5187/jast.2021.e93</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ071850481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ29f7ec8d97c54578af18415dab287aa2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF1-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jia Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42°C for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 μg/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 μg/mL (MET70, 70 μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30 μg/mL (MET90,90 μg/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 μg/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 μg/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 μg/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperthermia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protein synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">methionine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular mechanism</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Animal culture</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuangming Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benchu Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhisheng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lizhi Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quanhui Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bai Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Animal Science and Technology</subfield><subfield code="d">Korean Society of Animal Sciences and Technology, 2014</subfield><subfield code="g">63(2021), 5, Seite 1126-1141</subfield><subfield code="w">(DE-627)788845659</subfield><subfield code="w">(DE-600)2775231-8</subfield><subfield code="x">20550391</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1126-1141</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5187/jast.2021.e93</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/29f7ec8d97c54578af18415dab287aa2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.ejast.org/archive/view_article?pid=jast-63-5-1126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2672-0191</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2055-0391</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2021</subfield><subfield code="e">5</subfield><subfield code="h">1126-1141</subfield></datafield></record></collection>
|
score |
7.402158 |