Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs
Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years...
Ausführliche Beschreibung
Autor*in: |
Nitika Sandhu [verfasserIn] Arvind Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 7(2017), 2, p 27 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2017 ; number:2, p 27 |
Links: |
---|
DOI / URN: |
10.3390/agronomy7020027 |
---|
Katalog-ID: |
DOAJ07195354X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07195354X | ||
003 | DE-627 | ||
005 | 20230503064256.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy7020027 |2 doi | |
035 | |a (DE-627)DOAJ07195354X | ||
035 | |a (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Nitika Sandhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. | ||
650 | 4 | |a drought | |
650 | 4 | |a marker | |
650 | 4 | |a pyramiding | |
650 | 4 | |a QTLs | |
650 | 4 | |a rice | |
650 | 4 | |a genomics | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Arvind Kumar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 7(2017), 2, p 27 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2017 |g number:2, p 27 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy7020027 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2073-4395/7/2/27 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2017 |e 2, p 27 |
author_variant |
n s ns a k ak |
---|---|
matchkey_str |
article:20734395:2017----::rdighrcyedasnedogttseeadhiu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.3390/agronomy7020027 doi (DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 DE-627 ger DE-627 rakwb eng Nitika Sandhu verfasserin aut Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. drought marker pyramiding QTLs rice genomics Agriculture S Arvind Kumar verfasserin aut In Agronomy MDPI AG, 2012 7(2017), 2, p 27 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:7 year:2017 number:2, p 27 https://doi.org/10.3390/agronomy7020027 kostenfrei https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 kostenfrei http://www.mdpi.com/2073-4395/7/2/27 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2, p 27 |
spelling |
10.3390/agronomy7020027 doi (DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 DE-627 ger DE-627 rakwb eng Nitika Sandhu verfasserin aut Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. drought marker pyramiding QTLs rice genomics Agriculture S Arvind Kumar verfasserin aut In Agronomy MDPI AG, 2012 7(2017), 2, p 27 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:7 year:2017 number:2, p 27 https://doi.org/10.3390/agronomy7020027 kostenfrei https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 kostenfrei http://www.mdpi.com/2073-4395/7/2/27 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2, p 27 |
allfields_unstemmed |
10.3390/agronomy7020027 doi (DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 DE-627 ger DE-627 rakwb eng Nitika Sandhu verfasserin aut Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. drought marker pyramiding QTLs rice genomics Agriculture S Arvind Kumar verfasserin aut In Agronomy MDPI AG, 2012 7(2017), 2, p 27 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:7 year:2017 number:2, p 27 https://doi.org/10.3390/agronomy7020027 kostenfrei https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 kostenfrei http://www.mdpi.com/2073-4395/7/2/27 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2, p 27 |
allfieldsGer |
10.3390/agronomy7020027 doi (DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 DE-627 ger DE-627 rakwb eng Nitika Sandhu verfasserin aut Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. drought marker pyramiding QTLs rice genomics Agriculture S Arvind Kumar verfasserin aut In Agronomy MDPI AG, 2012 7(2017), 2, p 27 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:7 year:2017 number:2, p 27 https://doi.org/10.3390/agronomy7020027 kostenfrei https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 kostenfrei http://www.mdpi.com/2073-4395/7/2/27 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2, p 27 |
allfieldsSound |
10.3390/agronomy7020027 doi (DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 DE-627 ger DE-627 rakwb eng Nitika Sandhu verfasserin aut Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. drought marker pyramiding QTLs rice genomics Agriculture S Arvind Kumar verfasserin aut In Agronomy MDPI AG, 2012 7(2017), 2, p 27 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:7 year:2017 number:2, p 27 https://doi.org/10.3390/agronomy7020027 kostenfrei https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 kostenfrei http://www.mdpi.com/2073-4395/7/2/27 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2, p 27 |
language |
English |
source |
In Agronomy 7(2017), 2, p 27 volume:7 year:2017 number:2, p 27 |
sourceStr |
In Agronomy 7(2017), 2, p 27 volume:7 year:2017 number:2, p 27 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
drought marker pyramiding QTLs rice genomics Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Nitika Sandhu @@aut@@ Arvind Kumar @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ07195354X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07195354X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy7020027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07195354X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nitika Sandhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyramiding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QTLs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arvind Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">7(2017), 2, p 27</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy7020027</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-4395/7/2/27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">2, p 27</subfield></datafield></record></collection>
|
author |
Nitika Sandhu |
spellingShingle |
Nitika Sandhu misc drought misc marker misc pyramiding misc QTLs misc rice misc genomics misc Agriculture misc S Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
authorStr |
Nitika Sandhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs drought marker pyramiding QTLs rice genomics |
topic |
misc drought misc marker misc pyramiding misc QTLs misc rice misc genomics misc Agriculture misc S |
topic_unstemmed |
misc drought misc marker misc pyramiding misc QTLs misc rice misc genomics misc Agriculture misc S |
topic_browse |
misc drought misc marker misc pyramiding misc QTLs misc rice misc genomics misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
ctrlnum |
(DE-627)DOAJ07195354X (DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028 |
title_full |
Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
author_sort |
Nitika Sandhu |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Nitika Sandhu Arvind Kumar |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Nitika Sandhu |
doi_str_mv |
10.3390/agronomy7020027 |
author2-role |
verfasserin |
title_sort |
bridging the rice yield gaps under drought: qtls, genes, and their use in breeding programs |
title_auth |
Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
abstract |
Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. |
abstractGer |
Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. |
abstract_unstemmed |
Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 27 |
title_short |
Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs |
url |
https://doi.org/10.3390/agronomy7020027 https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028 http://www.mdpi.com/2073-4395/7/2/27 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Arvind Kumar |
author2Str |
Arvind Kumar |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy7020027 |
up_date |
2024-07-03T23:02:47.523Z |
_version_ |
1803600807879245824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07195354X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064256.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy7020027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07195354X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad7de0aee0dd4616ab0018b2069a9028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nitika Sandhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and their Use in Breeding Programs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rice is the staple food for more than half of the world’s population. Although rice production has doubled in the last 30 years as a result of the development of high-yield, widely adaptable, resource-responsive, semi-dwarf varieties, the threat of a food crisis remains as severe as it was 60 years ago due to the ever-increasing population, water scarcity, labor scarcity, shifting climatic conditions, pest/diseases, loss of productive land to housing, industries, rising sea levels, increasing incidences of drought, flood, urbanization, soil erosion, reduction in soil nutrient status, and environmental issues associated with high-input agriculture. Among these, drought is predicted to be the most severe stress that reduces rice yield. Systematic research on drought over the last 10 years has been conducted across institutes on physiology, breeding, molecular genetics, biotechnology, and cellular and molecular biology. This has provided a better understanding of plant drought mechanisms and has helped scientists to devise better strategies to reduce rice yield losses under drought stress. These include the identification of quantitative trait loci (QTLs) for grain yield under drought as well as many agronomically important traits related to drought tolerance, marker-assisted pyramiding of genetic regions that increase yield under drought, development of efficient techniques for genetic transformation, complete sequencing and annotation of rice genomes, and synteny studies of rice and other cereal genomes. Conventional and marker-assisted breeding rice lines containing useful introgressed genes or loci have been field tested and released as varieties. Still, there is a long way to go towards developing drought-tolerant rice varieties by exploiting existing genetic diversity, identifying superior alleles for drought tolerance, understanding interactions among alleles for drought tolerance and their interaction with genetic backgrounds, and pyramiding the best combination of alleles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">drought</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marker</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyramiding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QTLs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genomics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arvind Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">7(2017), 2, p 27</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2, p 27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy7020027</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad7de0aee0dd4616ab0018b2069a9028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-4395/7/2/27</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">2, p 27</subfield></datafield></record></collection>
|
score |
7.40226 |