Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio
Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanis...
Ausführliche Beschreibung
Autor*in: |
Dafne Musino [verfasserIn] Camille Rivard [verfasserIn] Bruno Novales [verfasserIn] Gautier Landrot [verfasserIn] Isabelle Capron [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanomaterials - MDPI AG, 2012, 10(2020), 8, p 1559 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:8, p 1559 |
Links: |
---|
DOI / URN: |
10.3390/nano10081559 |
---|
Katalog-ID: |
DOAJ072028769 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ072028769 | ||
003 | DE-627 | ||
005 | 20240412221614.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/nano10081559 |2 doi | |
035 | |a (DE-627)DOAJ072028769 | ||
035 | |a (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Dafne Musino |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. | ||
650 | 4 | |a CNC/AgNP hybrids | |
650 | 4 | |a H<sub<2</sub<O<sub<2</sub< redox post-treatment | |
650 | 4 | |a H<sub<2</sub<O<sub<2</sub</AgNP mass ratio | |
650 | 4 | |a oxidation state | |
650 | 4 | |a XANES-EXAFS | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Camille Rivard |e verfasserin |4 aut | |
700 | 0 | |a Bruno Novales |e verfasserin |4 aut | |
700 | 0 | |a Gautier Landrot |e verfasserin |4 aut | |
700 | 0 | |a Isabelle Capron |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanomaterials |d MDPI AG, 2012 |g 10(2020), 8, p 1559 |w (DE-627)718627199 |w (DE-600)2662255-5 |x 20794991 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:8, p 1559 |
856 | 4 | 0 | |u https://doi.org/10.3390/nano10081559 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-4991/10/8/1559 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-4991 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 8, p 1559 |
author_variant |
d m dm c r cr b n bn g l gl i c ic |
---|---|
matchkey_str |
article:20794991:2020----::uigfgaoatcerprisnellsnncytlannprilhbissesosysbsbsbsbeopste |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QD |
publishDate |
2020 |
allfields |
10.3390/nano10081559 doi (DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 DE-627 ger DE-627 rakwb eng QD1-999 Dafne Musino verfasserin aut Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry Camille Rivard verfasserin aut Bruno Novales verfasserin aut Gautier Landrot verfasserin aut Isabelle Capron verfasserin aut In Nanomaterials MDPI AG, 2012 10(2020), 8, p 1559 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:10 year:2020 number:8, p 1559 https://doi.org/10.3390/nano10081559 kostenfrei https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 kostenfrei https://www.mdpi.com/2079-4991/10/8/1559 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 8, p 1559 |
spelling |
10.3390/nano10081559 doi (DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 DE-627 ger DE-627 rakwb eng QD1-999 Dafne Musino verfasserin aut Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry Camille Rivard verfasserin aut Bruno Novales verfasserin aut Gautier Landrot verfasserin aut Isabelle Capron verfasserin aut In Nanomaterials MDPI AG, 2012 10(2020), 8, p 1559 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:10 year:2020 number:8, p 1559 https://doi.org/10.3390/nano10081559 kostenfrei https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 kostenfrei https://www.mdpi.com/2079-4991/10/8/1559 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 8, p 1559 |
allfields_unstemmed |
10.3390/nano10081559 doi (DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 DE-627 ger DE-627 rakwb eng QD1-999 Dafne Musino verfasserin aut Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry Camille Rivard verfasserin aut Bruno Novales verfasserin aut Gautier Landrot verfasserin aut Isabelle Capron verfasserin aut In Nanomaterials MDPI AG, 2012 10(2020), 8, p 1559 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:10 year:2020 number:8, p 1559 https://doi.org/10.3390/nano10081559 kostenfrei https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 kostenfrei https://www.mdpi.com/2079-4991/10/8/1559 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 8, p 1559 |
allfieldsGer |
10.3390/nano10081559 doi (DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 DE-627 ger DE-627 rakwb eng QD1-999 Dafne Musino verfasserin aut Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry Camille Rivard verfasserin aut Bruno Novales verfasserin aut Gautier Landrot verfasserin aut Isabelle Capron verfasserin aut In Nanomaterials MDPI AG, 2012 10(2020), 8, p 1559 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:10 year:2020 number:8, p 1559 https://doi.org/10.3390/nano10081559 kostenfrei https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 kostenfrei https://www.mdpi.com/2079-4991/10/8/1559 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 8, p 1559 |
allfieldsSound |
10.3390/nano10081559 doi (DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 DE-627 ger DE-627 rakwb eng QD1-999 Dafne Musino verfasserin aut Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry Camille Rivard verfasserin aut Bruno Novales verfasserin aut Gautier Landrot verfasserin aut Isabelle Capron verfasserin aut In Nanomaterials MDPI AG, 2012 10(2020), 8, p 1559 (DE-627)718627199 (DE-600)2662255-5 20794991 nnns volume:10 year:2020 number:8, p 1559 https://doi.org/10.3390/nano10081559 kostenfrei https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 kostenfrei https://www.mdpi.com/2079-4991/10/8/1559 kostenfrei https://doaj.org/toc/2079-4991 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 8, p 1559 |
language |
English |
source |
In Nanomaterials 10(2020), 8, p 1559 volume:10 year:2020 number:8, p 1559 |
sourceStr |
In Nanomaterials 10(2020), 8, p 1559 volume:10 year:2020 number:8, p 1559 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS Chemistry |
isfreeaccess_bool |
true |
container_title |
Nanomaterials |
authorswithroles_txt_mv |
Dafne Musino @@aut@@ Camille Rivard @@aut@@ Bruno Novales @@aut@@ Gautier Landrot @@aut@@ Isabelle Capron @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
718627199 |
id |
DOAJ072028769 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072028769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412221614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano10081559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072028769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dafne Musino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNC/AgNP hybrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< redox post-treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub</AgNP mass ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxidation state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XANES-EXAFS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camille Rivard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruno Novales</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gautier Landrot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isabelle Capron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 8, p 1559</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8, p 1559</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano10081559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/10/8/1559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">8, p 1559</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dafne Musino |
spellingShingle |
Dafne Musino misc QD1-999 misc CNC/AgNP hybrids misc H<sub<2</sub<O<sub<2</sub< redox post-treatment misc H<sub<2</sub<O<sub<2</sub</AgNP mass ratio misc oxidation state misc XANES-EXAFS misc Chemistry Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
authorStr |
Dafne Musino |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627199 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
20794991 |
topic_title |
QD1-999 Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio CNC/AgNP hybrids H<sub<2</sub<O<sub<2</sub< redox post-treatment H<sub<2</sub<O<sub<2</sub</AgNP mass ratio oxidation state XANES-EXAFS |
topic |
misc QD1-999 misc CNC/AgNP hybrids misc H<sub<2</sub<O<sub<2</sub< redox post-treatment misc H<sub<2</sub<O<sub<2</sub</AgNP mass ratio misc oxidation state misc XANES-EXAFS misc Chemistry |
topic_unstemmed |
misc QD1-999 misc CNC/AgNP hybrids misc H<sub<2</sub<O<sub<2</sub< redox post-treatment misc H<sub<2</sub<O<sub<2</sub</AgNP mass ratio misc oxidation state misc XANES-EXAFS misc Chemistry |
topic_browse |
misc QD1-999 misc CNC/AgNP hybrids misc H<sub<2</sub<O<sub<2</sub< redox post-treatment misc H<sub<2</sub<O<sub<2</sub</AgNP mass ratio misc oxidation state misc XANES-EXAFS misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanomaterials |
hierarchy_parent_id |
718627199 |
hierarchy_top_title |
Nanomaterials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627199 (DE-600)2662255-5 |
title |
Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
ctrlnum |
(DE-627)DOAJ072028769 (DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140 |
title_full |
Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
author_sort |
Dafne Musino |
journal |
Nanomaterials |
journalStr |
Nanomaterials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Dafne Musino Camille Rivard Bruno Novales Gautier Landrot Isabelle Capron |
container_volume |
10 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Dafne Musino |
doi_str_mv |
10.3390/nano10081559 |
author2-role |
verfasserin |
title_sort |
tuning of ag nanoparticle properties in cellulose nanocrystals/ag nanoparticle hybrid suspensions by h<sub<2</sub<o<sub<2</sub< redox post-treatment: the role of the h<sub<2</sub<o<sub<2</sub</agnp ratio |
callnumber |
QD1-999 |
title_auth |
Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
abstract |
Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. |
abstractGer |
Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. |
abstract_unstemmed |
Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1559 |
title_short |
Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio |
url |
https://doi.org/10.3390/nano10081559 https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140 https://www.mdpi.com/2079-4991/10/8/1559 https://doaj.org/toc/2079-4991 |
remote_bool |
true |
author2 |
Camille Rivard Bruno Novales Gautier Landrot Isabelle Capron |
author2Str |
Camille Rivard Bruno Novales Gautier Landrot Isabelle Capron |
ppnlink |
718627199 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/nano10081559 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T23:24:02.463Z |
_version_ |
1803602144750731264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072028769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412221614.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/nano10081559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072028769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7011dd5f2a9646ffbbad5bf089a31140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dafne Musino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H<sub<2</sub<O<sub<2</sub< Redox Post-Treatment: The Role of the H<sub<2</sub<O<sub<2</sub</AgNP Ratio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hybrid nanoparticles involving 10-nm silver nanoparticles (AgNPs) nucleated on unmodified rod-like cellulose nanocrystals (CNCs) were prepared by chemical reduction. H<sub<2</sub<O<sub<2</sub< used as a post-treatment induced a size-shape transition following a redox mechanism, passing from 10-nm spherical AgNPs to 300-nm triangular or prismatic NPs (AgNPrisms), where CNCs are the only stabilizers for AgNPs and AgNPrisms. We investigated the role of the H<sub<2</sub<O<sub<2</sub</AgNP mass ratio (α) on AgNPs. At α values above 0.20, the large amount of H<sub<2</sub<O<sub<2</sub< led to extensive oxidation that produced numerous nucleation points for AgNPrisms on CNCs. On the contrary, for α below 0.20, primary AgNPs are only partially oxidized, releasing a reduced amount of Ag<sup<+</sup< ions and thus preventing the formation of AgNPrisms and reforming spherical AgNPs. While XRD and EXAFS reveal that the AgNP fcc crystal structure is unaffected by the H<sub<2</sub<O<sub<2</sub< treatment, the XANES spectra proved that the AgNP–AgNPrism transition is always associated with an increase in the metallic Ag fraction (Ag<sub<0</sub<). In contrast, the formation of new 15-nm spherical AgNPs keeps the initial Ag<sub<0</sub</Ag<sup<+</sup< ratio unmodified. For the first time, we introduce a complete guide map for the fully-controlled preparation of aqueous dispersed AgNPs using CNC as a template.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNC/AgNP hybrids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub< redox post-treatment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub</AgNP mass ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">oxidation state</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XANES-EXAFS</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Camille Rivard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bruno Novales</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gautier Landrot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Isabelle Capron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanomaterials</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 8, p 1559</subfield><subfield code="w">(DE-627)718627199</subfield><subfield code="w">(DE-600)2662255-5</subfield><subfield code="x">20794991</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:8, p 1559</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/nano10081559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7011dd5f2a9646ffbbad5bf089a31140</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-4991/10/8/1559</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-4991</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">8, p 1559</subfield></datafield></record></collection>
|
score |
7.3993473 |