Remarks on Multiplicative Atom-Bond Connectivity Index
The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC ind...
Ausführliche Beschreibung
Autor*in: |
Riste Skrekovski [verfasserIn] Darko Dimitrov [verfasserIn] Jiemei Zhong [verfasserIn] Hualong Wu [verfasserIn] Wei Gao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 76806-76811 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:76806-76811 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2920882 |
---|
Katalog-ID: |
DOAJ072093862 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ072093862 | ||
003 | DE-627 | ||
005 | 20230309104758.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2920882 |2 doi | |
035 | |a (DE-627)DOAJ072093862 | ||
035 | |a (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Riste Skrekovski |e verfasserin |4 aut | |
245 | 1 | 0 | |a Remarks on Multiplicative Atom-Bond Connectivity Index |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. | ||
650 | 4 | |a Chemical graph theory | |
650 | 4 | |a atom-bond connectivity | |
650 | 4 | |a multiplicative atom-bond connectivity index | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Darko Dimitrov |e verfasserin |4 aut | |
700 | 0 | |a Jiemei Zhong |e verfasserin |4 aut | |
700 | 0 | |a Hualong Wu |e verfasserin |4 aut | |
700 | 0 | |a Wei Gao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 76806-76811 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:76806-76811 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2920882 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8731846/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 76806-76811 |
author_variant |
r s rs d d dd j z jz h w hw w g wg |
---|---|
matchkey_str |
article:21693536:2019----::eakomlilctvaobncne |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2920882 doi (DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 DE-627 ger DE-627 rakwb eng TK1-9971 Riste Skrekovski verfasserin aut Remarks on Multiplicative Atom-Bond Connectivity Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering Darko Dimitrov verfasserin aut Jiemei Zhong verfasserin aut Hualong Wu verfasserin aut Wei Gao verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 76806-76811 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:76806-76811 https://doi.org/10.1109/ACCESS.2019.2920882 kostenfrei https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 kostenfrei https://ieeexplore.ieee.org/document/8731846/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 76806-76811 |
spelling |
10.1109/ACCESS.2019.2920882 doi (DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 DE-627 ger DE-627 rakwb eng TK1-9971 Riste Skrekovski verfasserin aut Remarks on Multiplicative Atom-Bond Connectivity Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering Darko Dimitrov verfasserin aut Jiemei Zhong verfasserin aut Hualong Wu verfasserin aut Wei Gao verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 76806-76811 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:76806-76811 https://doi.org/10.1109/ACCESS.2019.2920882 kostenfrei https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 kostenfrei https://ieeexplore.ieee.org/document/8731846/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 76806-76811 |
allfields_unstemmed |
10.1109/ACCESS.2019.2920882 doi (DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 DE-627 ger DE-627 rakwb eng TK1-9971 Riste Skrekovski verfasserin aut Remarks on Multiplicative Atom-Bond Connectivity Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering Darko Dimitrov verfasserin aut Jiemei Zhong verfasserin aut Hualong Wu verfasserin aut Wei Gao verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 76806-76811 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:76806-76811 https://doi.org/10.1109/ACCESS.2019.2920882 kostenfrei https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 kostenfrei https://ieeexplore.ieee.org/document/8731846/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 76806-76811 |
allfieldsGer |
10.1109/ACCESS.2019.2920882 doi (DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 DE-627 ger DE-627 rakwb eng TK1-9971 Riste Skrekovski verfasserin aut Remarks on Multiplicative Atom-Bond Connectivity Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering Darko Dimitrov verfasserin aut Jiemei Zhong verfasserin aut Hualong Wu verfasserin aut Wei Gao verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 76806-76811 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:76806-76811 https://doi.org/10.1109/ACCESS.2019.2920882 kostenfrei https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 kostenfrei https://ieeexplore.ieee.org/document/8731846/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 76806-76811 |
allfieldsSound |
10.1109/ACCESS.2019.2920882 doi (DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 DE-627 ger DE-627 rakwb eng TK1-9971 Riste Skrekovski verfasserin aut Remarks on Multiplicative Atom-Bond Connectivity Index 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering Darko Dimitrov verfasserin aut Jiemei Zhong verfasserin aut Hualong Wu verfasserin aut Wei Gao verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 76806-76811 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:76806-76811 https://doi.org/10.1109/ACCESS.2019.2920882 kostenfrei https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 kostenfrei https://ieeexplore.ieee.org/document/8731846/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 76806-76811 |
language |
English |
source |
In IEEE Access 7(2019), Seite 76806-76811 volume:7 year:2019 pages:76806-76811 |
sourceStr |
In IEEE Access 7(2019), Seite 76806-76811 volume:7 year:2019 pages:76806-76811 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Riste Skrekovski @@aut@@ Darko Dimitrov @@aut@@ Jiemei Zhong @@aut@@ Hualong Wu @@aut@@ Wei Gao @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ072093862 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072093862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309104758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2920882</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072093862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Riste Skrekovski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Remarks on Multiplicative Atom-Bond Connectivity Index</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atom-bond connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiplicative atom-bond connectivity index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Darko Dimitrov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiemei Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hualong Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 76806-76811</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:76806-76811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2920882</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8731846/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">76806-76811</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Riste Skrekovski |
spellingShingle |
Riste Skrekovski misc TK1-9971 misc Chemical graph theory misc atom-bond connectivity misc multiplicative atom-bond connectivity index misc Electrical engineering. Electronics. Nuclear engineering Remarks on Multiplicative Atom-Bond Connectivity Index |
authorStr |
Riste Skrekovski |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Remarks on Multiplicative Atom-Bond Connectivity Index Chemical graph theory atom-bond connectivity multiplicative atom-bond connectivity index |
topic |
misc TK1-9971 misc Chemical graph theory misc atom-bond connectivity misc multiplicative atom-bond connectivity index misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Chemical graph theory misc atom-bond connectivity misc multiplicative atom-bond connectivity index misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Chemical graph theory misc atom-bond connectivity misc multiplicative atom-bond connectivity index misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Remarks on Multiplicative Atom-Bond Connectivity Index |
ctrlnum |
(DE-627)DOAJ072093862 (DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099 |
title_full |
Remarks on Multiplicative Atom-Bond Connectivity Index |
author_sort |
Riste Skrekovski |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
76806 |
author_browse |
Riste Skrekovski Darko Dimitrov Jiemei Zhong Hualong Wu Wei Gao |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Riste Skrekovski |
doi_str_mv |
10.1109/ACCESS.2019.2920882 |
author2-role |
verfasserin |
title_sort |
remarks on multiplicative atom-bond connectivity index |
callnumber |
TK1-9971 |
title_auth |
Remarks on Multiplicative Atom-Bond Connectivity Index |
abstract |
The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. |
abstractGer |
The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. |
abstract_unstemmed |
The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Remarks on Multiplicative Atom-Bond Connectivity Index |
url |
https://doi.org/10.1109/ACCESS.2019.2920882 https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099 https://ieeexplore.ieee.org/document/8731846/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Darko Dimitrov Jiemei Zhong Hualong Wu Wei Gao |
author2Str |
Darko Dimitrov Jiemei Zhong Hualong Wu Wei Gao |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2920882 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T23:41:43.923Z |
_version_ |
1803603257772212224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072093862</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309104758.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2920882</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072093862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1fa2e86168334a7cbefa45f7727a8099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Riste Skrekovski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Remarks on Multiplicative Atom-Bond Connectivity Index</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The atom-bond connectivity (ABC) index is one of the most actively studied degree-based graph invariants that are found in a vast variety of chemical applications. This paper is devoted to establishing some extremal results regarding the variant of the ABC index, the so-called multiplicative ABC index (ABC$\Pi $ ), which, for a graph $G$ , is defined as ${{ ABC}}\Pi (G)=\prod _{uv\in E(G)}\sqrt {\frac {d(u)+d(v)-2}{d(u)d(v)}}$ . We have shown that the complete graph $K_{n}$ has a minimum ABC$\Pi $ index among connected simple graphs with $n$ vertices, while the star graph $S_{n-1}$ has the maximum ABC$\Pi $ index. As $S_{n-1}$ attains the maximum amongst bipartite graphs on $n$ vertices, we additionally show that the bipartite complete balanced graph $K_{\left \lfloor{ n/2 }\right \rfloor, \left \lceil{ n/2 }\right \rceil }$ attains the minimum in this class of graphs. As an interesting problem, we propose to characterize the trees with the minimum value of this index, and, here, we have some structural properties of these trees. We conclude this paper with few conjectures for possible further work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atom-bond connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiplicative atom-bond connectivity index</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Darko Dimitrov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiemei Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hualong Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 76806-76811</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:76806-76811</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2920882</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1fa2e86168334a7cbefa45f7727a8099</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8731846/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">76806-76811</subfield></datafield></record></collection>
|
score |
7.402693 |