Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders
At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in...
Ausführliche Beschreibung
Autor*in: |
G. Guillermo [verfasserIn] D. Sagan [verfasserIn] F. Zimmermann [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: Physical Review Accelerators and Beams - American Physical Society, 2016, 21(2018), 2, p 021001 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2018 ; number:2, p 021001 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1103/PhysRevAccelBeams.21.021001 |
---|
Katalog-ID: |
DOAJ072346639 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ072346639 | ||
003 | DE-627 | ||
005 | 20230309105917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevAccelBeams.21.021001 |2 doi | |
035 | |a (DE-627)DOAJ072346639 | ||
035 | |a (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a G. Guillermo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. | ||
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
700 | 0 | |a D. Sagan |e verfasserin |4 aut | |
700 | 0 | |a F. Zimmermann |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Physical Review Accelerators and Beams |d American Physical Society, 2016 |g 21(2018), 2, p 021001 |w (DE-627)845689495 |w (DE-600)2844143-6 |x 24699888 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2018 |g number:2, p 021001 |
856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevAccelBeams.21.021001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevAccelBeams.21.021001 |z kostenfrei |
856 | 4 | 0 | |u http://doi.org/10.1103/PhysRevAccelBeams.21.021001 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2469-9888 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2018 |e 2, p 021001 |
author_variant |
g g gg d s ds f z fz |
---|---|
matchkey_str |
article:24699888:2018----::xmnnmtgtoshmsosnhornaitoihge |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QC |
publishDate |
2018 |
allfields |
10.1103/PhysRevAccelBeams.21.021001 doi (DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b DE-627 ger DE-627 rakwb eng QC770-798 G. Guillermo verfasserin aut Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. Nuclear and particle physics. Atomic energy. Radioactivity D. Sagan verfasserin aut F. Zimmermann verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 21(2018), 2, p 021001 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:21 year:2018 number:2, p 021001 https://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2018 2, p 021001 |
spelling |
10.1103/PhysRevAccelBeams.21.021001 doi (DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b DE-627 ger DE-627 rakwb eng QC770-798 G. Guillermo verfasserin aut Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. Nuclear and particle physics. Atomic energy. Radioactivity D. Sagan verfasserin aut F. Zimmermann verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 21(2018), 2, p 021001 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:21 year:2018 number:2, p 021001 https://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2018 2, p 021001 |
allfields_unstemmed |
10.1103/PhysRevAccelBeams.21.021001 doi (DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b DE-627 ger DE-627 rakwb eng QC770-798 G. Guillermo verfasserin aut Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. Nuclear and particle physics. Atomic energy. Radioactivity D. Sagan verfasserin aut F. Zimmermann verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 21(2018), 2, p 021001 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:21 year:2018 number:2, p 021001 https://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2018 2, p 021001 |
allfieldsGer |
10.1103/PhysRevAccelBeams.21.021001 doi (DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b DE-627 ger DE-627 rakwb eng QC770-798 G. Guillermo verfasserin aut Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. Nuclear and particle physics. Atomic energy. Radioactivity D. Sagan verfasserin aut F. Zimmermann verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 21(2018), 2, p 021001 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:21 year:2018 number:2, p 021001 https://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2018 2, p 021001 |
allfieldsSound |
10.1103/PhysRevAccelBeams.21.021001 doi (DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b DE-627 ger DE-627 rakwb eng QC770-798 G. Guillermo verfasserin aut Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. Nuclear and particle physics. Atomic energy. Radioactivity D. Sagan verfasserin aut F. Zimmermann verfasserin aut In Physical Review Accelerators and Beams American Physical Society, 2016 21(2018), 2, p 021001 (DE-627)845689495 (DE-600)2844143-6 24699888 nnns volume:21 year:2018 number:2, p 021001 https://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei http://doi.org/10.1103/PhysRevAccelBeams.21.021001 kostenfrei https://doaj.org/toc/2469-9888 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2018 2, p 021001 |
language |
English |
source |
In Physical Review Accelerators and Beams 21(2018), 2, p 021001 volume:21 year:2018 number:2, p 021001 |
sourceStr |
In Physical Review Accelerators and Beams 21(2018), 2, p 021001 volume:21 year:2018 number:2, p 021001 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Physical Review Accelerators and Beams |
authorswithroles_txt_mv |
G. Guillermo @@aut@@ D. Sagan @@aut@@ F. Zimmermann @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
845689495 |
id |
DOAJ072346639 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072346639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309105917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072346639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf622e72f98584280a499a7977a8a3b2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">G. Guillermo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Sagan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. Zimmermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review Accelerators and Beams</subfield><subfield code="d">American Physical Society, 2016</subfield><subfield code="g">21(2018), 2, p 021001</subfield><subfield code="w">(DE-627)845689495</subfield><subfield code="w">(DE-600)2844143-6</subfield><subfield code="x">24699888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2, p 021001</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2469-9888</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2018</subfield><subfield code="e">2, p 021001</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
G. Guillermo |
spellingShingle |
G. Guillermo misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
authorStr |
G. Guillermo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)845689495 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
24699888 |
topic_title |
QC770-798 Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
topic |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physical Review Accelerators and Beams |
hierarchy_parent_id |
845689495 |
hierarchy_top_title |
Physical Review Accelerators and Beams |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)845689495 (DE-600)2844143-6 |
title |
Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
ctrlnum |
(DE-627)DOAJ072346639 (DE-599)DOAJf622e72f98584280a499a7977a8a3b2b |
title_full |
Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
author_sort |
G. Guillermo |
journal |
Physical Review Accelerators and Beams |
journalStr |
Physical Review Accelerators and Beams |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
G. Guillermo D. Sagan F. Zimmermann |
container_volume |
21 |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
G. Guillermo |
doi_str_mv |
10.1103/PhysRevAccelBeams.21.021001 |
author2-role |
verfasserin |
title_sort |
examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
callnumber |
QC770-798 |
title_auth |
Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
abstract |
At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. |
abstractGer |
At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. |
abstract_unstemmed |
At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 021001 |
title_short |
Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders |
url |
https://doi.org/10.1103/PhysRevAccelBeams.21.021001 https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b http://doi.org/10.1103/PhysRevAccelBeams.21.021001 https://doaj.org/toc/2469-9888 |
remote_bool |
true |
author2 |
D. Sagan F. Zimmermann |
author2Str |
D. Sagan F. Zimmermann |
ppnlink |
845689495 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1103/PhysRevAccelBeams.21.021001 |
callnumber-a |
QC770-798 |
up_date |
2024-07-04T00:43:30.547Z |
_version_ |
1803607144450228224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072346639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309105917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072346639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf622e72f98584280a499a7977a8a3b2b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">G. Guillermo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Examining mitigation schemes for synchrotron radiation in high-energy hadron colliders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the synrad3d code developed at Cornell to simulate the photon distributions in the arcs of several existing, planned, or proposed highest-energy hadron colliders to analyze the efficiency of several techniques developed, or proposed, to mitigate the negative effects of synchrotron radiation, such as a sawtooth surface and slots in the beam screen.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Sagan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">F. Zimmermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Physical Review Accelerators and Beams</subfield><subfield code="d">American Physical Society, 2016</subfield><subfield code="g">21(2018), 2, p 021001</subfield><subfield code="w">(DE-627)845689495</subfield><subfield code="w">(DE-600)2844143-6</subfield><subfield code="x">24699888</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:2, p 021001</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f622e72f98584280a499a7977a8a3b2b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://doi.org/10.1103/PhysRevAccelBeams.21.021001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2469-9888</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2018</subfield><subfield code="e">2, p 021001</subfield></datafield></record></collection>
|
score |
7.400977 |