A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira
BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main ris...
Ausführliche Beschreibung
Autor*in: |
Lucio Bakos [verfasserIn] Simeona Mastroeni [verfasserIn] Renan Rangel Bonamigo [verfasserIn] Franco Melchi [verfasserIn] Paolo Pasquini [verfasserIn] Cristina Fortes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Portugiesisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Anais Brasileiros de Dermatologia - Sociedade Brasileira de Dermatologia, 2004, 88(2013), 2, Seite 226-232 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2013 ; number:2 ; pages:226-232 |
Links: |
---|
Katalog-ID: |
DOAJ072456884 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ072456884 | ||
003 | DE-627 | ||
005 | 20230309110349.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2013 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ072456884 | ||
035 | |a (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a por | ||
050 | 0 | |a RL1-803 | |
100 | 0 | |a Lucio Bakos |e verfasserin |4 aut | |
245 | 1 | 2 | |a A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. | ||
650 | 4 | |a Fatores de risco | |
650 | 4 | |a Melanoma | |
650 | 4 | |a Nevos e melanomas | |
650 | 4 | |a Risco | |
650 | 4 | |a Nevi and melanomas | |
650 | 4 | |a Risk | |
650 | 4 | |a Risk factors | |
653 | 0 | |a Dermatology | |
700 | 0 | |a Simeona Mastroeni |e verfasserin |4 aut | |
700 | 0 | |a Renan Rangel Bonamigo |e verfasserin |4 aut | |
700 | 0 | |a Franco Melchi |e verfasserin |4 aut | |
700 | 0 | |a Paolo Pasquini |e verfasserin |4 aut | |
700 | 0 | |a Cristina Fortes |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Anais Brasileiros de Dermatologia |d Sociedade Brasileira de Dermatologia, 2004 |g 88(2013), 2, Seite 226-232 |w (DE-627)387478906 |w (DE-600)2145422-X |x 03650596 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2013 |g number:2 |g pages:226-232 |
856 | 4 | 0 | |u https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 |z kostenfrei |
856 | 4 | 0 | |u http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0365-0596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1806-4841 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 88 |j 2013 |e 2 |h 226-232 |
author_variant |
l b lb s m sm r r b rrb f m fm p p pp c f cf |
---|---|
matchkey_str |
article:03650596:2013----::mlnmrssoenbaiinouainmsoeeicprmlnm |
hierarchy_sort_str |
2013 |
callnumber-subject-code |
RL |
publishDate |
2013 |
allfields |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 DE-627 ger DE-627 rakwb eng por RL1-803 Lucio Bakos verfasserin aut A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology Simeona Mastroeni verfasserin aut Renan Rangel Bonamigo verfasserin aut Franco Melchi verfasserin aut Paolo Pasquini verfasserin aut Cristina Fortes verfasserin aut In Anais Brasileiros de Dermatologia Sociedade Brasileira de Dermatologia, 2004 88(2013), 2, Seite 226-232 (DE-627)387478906 (DE-600)2145422-X 03650596 nnns volume:88 year:2013 number:2 pages:226-232 https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 kostenfrei https://doaj.org/toc/0365-0596 Journal toc kostenfrei https://doaj.org/toc/1806-4841 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 88 2013 2 226-232 |
spelling |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 DE-627 ger DE-627 rakwb eng por RL1-803 Lucio Bakos verfasserin aut A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology Simeona Mastroeni verfasserin aut Renan Rangel Bonamigo verfasserin aut Franco Melchi verfasserin aut Paolo Pasquini verfasserin aut Cristina Fortes verfasserin aut In Anais Brasileiros de Dermatologia Sociedade Brasileira de Dermatologia, 2004 88(2013), 2, Seite 226-232 (DE-627)387478906 (DE-600)2145422-X 03650596 nnns volume:88 year:2013 number:2 pages:226-232 https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 kostenfrei https://doaj.org/toc/0365-0596 Journal toc kostenfrei https://doaj.org/toc/1806-4841 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 88 2013 2 226-232 |
allfields_unstemmed |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 DE-627 ger DE-627 rakwb eng por RL1-803 Lucio Bakos verfasserin aut A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology Simeona Mastroeni verfasserin aut Renan Rangel Bonamigo verfasserin aut Franco Melchi verfasserin aut Paolo Pasquini verfasserin aut Cristina Fortes verfasserin aut In Anais Brasileiros de Dermatologia Sociedade Brasileira de Dermatologia, 2004 88(2013), 2, Seite 226-232 (DE-627)387478906 (DE-600)2145422-X 03650596 nnns volume:88 year:2013 number:2 pages:226-232 https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 kostenfrei https://doaj.org/toc/0365-0596 Journal toc kostenfrei https://doaj.org/toc/1806-4841 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 88 2013 2 226-232 |
allfieldsGer |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 DE-627 ger DE-627 rakwb eng por RL1-803 Lucio Bakos verfasserin aut A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology Simeona Mastroeni verfasserin aut Renan Rangel Bonamigo verfasserin aut Franco Melchi verfasserin aut Paolo Pasquini verfasserin aut Cristina Fortes verfasserin aut In Anais Brasileiros de Dermatologia Sociedade Brasileira de Dermatologia, 2004 88(2013), 2, Seite 226-232 (DE-627)387478906 (DE-600)2145422-X 03650596 nnns volume:88 year:2013 number:2 pages:226-232 https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 kostenfrei https://doaj.org/toc/0365-0596 Journal toc kostenfrei https://doaj.org/toc/1806-4841 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 88 2013 2 226-232 |
allfieldsSound |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 DE-627 ger DE-627 rakwb eng por RL1-803 Lucio Bakos verfasserin aut A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology Simeona Mastroeni verfasserin aut Renan Rangel Bonamigo verfasserin aut Franco Melchi verfasserin aut Paolo Pasquini verfasserin aut Cristina Fortes verfasserin aut In Anais Brasileiros de Dermatologia Sociedade Brasileira de Dermatologia, 2004 88(2013), 2, Seite 226-232 (DE-627)387478906 (DE-600)2145422-X 03650596 nnns volume:88 year:2013 number:2 pages:226-232 https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 kostenfrei http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 kostenfrei https://doaj.org/toc/0365-0596 Journal toc kostenfrei https://doaj.org/toc/1806-4841 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 88 2013 2 226-232 |
language |
English Portuguese |
source |
In Anais Brasileiros de Dermatologia 88(2013), 2, Seite 226-232 volume:88 year:2013 number:2 pages:226-232 |
sourceStr |
In Anais Brasileiros de Dermatologia 88(2013), 2, Seite 226-232 volume:88 year:2013 number:2 pages:226-232 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors Dermatology |
isfreeaccess_bool |
true |
container_title |
Anais Brasileiros de Dermatologia |
authorswithroles_txt_mv |
Lucio Bakos @@aut@@ Simeona Mastroeni @@aut@@ Renan Rangel Bonamigo @@aut@@ Franco Melchi @@aut@@ Paolo Pasquini @@aut@@ Cristina Fortes @@aut@@ |
publishDateDaySort_date |
2013-01-01T00:00:00Z |
hierarchy_top_id |
387478906 |
id |
DOAJ072456884 |
language_de |
englisch portugiesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072456884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309110349.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072456884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RL1-803</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lucio Bakos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatores de risco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melanoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nevos e melanomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nevi and melanomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk factors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dermatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simeona Mastroeni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renan Rangel Bonamigo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franco Melchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Pasquini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristina Fortes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Anais Brasileiros de Dermatologia</subfield><subfield code="d">Sociedade Brasileira de Dermatologia, 2004</subfield><subfield code="g">88(2013), 2, Seite 226-232</subfield><subfield code="w">(DE-627)387478906</subfield><subfield code="w">(DE-600)2145422-X</subfield><subfield code="x">03650596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:226-232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0365-0596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1806-4841</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="h">226-232</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Lucio Bakos |
spellingShingle |
Lucio Bakos misc RL1-803 misc Fatores de risco misc Melanoma misc Nevos e melanomas misc Risco misc Nevi and melanomas misc Risk misc Risk factors misc Dermatology A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
authorStr |
Lucio Bakos |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)387478906 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RL1-803 |
illustrated |
Not Illustrated |
issn |
03650596 |
topic_title |
RL1-803 A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira Fatores de risco Melanoma Nevos e melanomas Risco Nevi and melanomas Risk Risk factors |
topic |
misc RL1-803 misc Fatores de risco misc Melanoma misc Nevos e melanomas misc Risco misc Nevi and melanomas misc Risk misc Risk factors misc Dermatology |
topic_unstemmed |
misc RL1-803 misc Fatores de risco misc Melanoma misc Nevos e melanomas misc Risco misc Nevi and melanomas misc Risk misc Risk factors misc Dermatology |
topic_browse |
misc RL1-803 misc Fatores de risco misc Melanoma misc Nevos e melanomas misc Risco misc Nevi and melanomas misc Risk misc Risk factors misc Dermatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Anais Brasileiros de Dermatologia |
hierarchy_parent_id |
387478906 |
hierarchy_top_title |
Anais Brasileiros de Dermatologia |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)387478906 (DE-600)2145422-X |
title |
A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
ctrlnum |
(DE-627)DOAJ072456884 (DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37 |
title_full |
A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
author_sort |
Lucio Bakos |
journal |
Anais Brasileiros de Dermatologia |
journalStr |
Anais Brasileiros de Dermatologia |
callnumber-first-code |
R |
lang_code |
eng por |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
226 |
author_browse |
Lucio Bakos Simeona Mastroeni Renan Rangel Bonamigo Franco Melchi Paolo Pasquini Cristina Fortes |
container_volume |
88 |
class |
RL1-803 |
format_se |
Elektronische Aufsätze |
author-letter |
Lucio Bakos |
author2-role |
verfasserin |
title_sort |
melanoma risk score in a brazilian population um escore de risco para melanoma em uma população brasileira |
callnumber |
RL1-803 |
title_auth |
A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
abstract |
BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. |
abstractGer |
BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. |
abstract_unstemmed |
BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira |
url |
https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226 https://doaj.org/toc/0365-0596 https://doaj.org/toc/1806-4841 |
remote_bool |
true |
author2 |
Simeona Mastroeni Renan Rangel Bonamigo Franco Melchi Paolo Pasquini Cristina Fortes |
author2Str |
Simeona Mastroeni Renan Rangel Bonamigo Franco Melchi Paolo Pasquini Cristina Fortes |
ppnlink |
387478906 |
callnumber-subject |
RL - Dermatology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
RL1-803 |
up_date |
2024-07-04T01:08:55.338Z |
_version_ |
1803608743310524417 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072456884</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309110349.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072456884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ237f4815038b4adbb9059e0a3ef3af37</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">por</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RL1-803</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lucio Bakos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A melanoma risk score in a Brazilian population Um escore de risco para melanoma em uma população brasileira</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BACKGROUND: Important risk factors for cutaneous melanoma (CM) are recognized, but standardized scores for individual assessment must still be developed. OBJECTIVES: The objective of this study was to develop a risk score of CM for a Brazilian sample. METHODS: To verify the estimates of the main risk factors for melanoma, derived from a meta-analysis (Italian-based study), and externally validate them in a population in southern Brazil by means of a case-control study. A total of 117 individuals were evaluated. Different models were constructed combining the summary coefficients of different risk factors, derived from the meta-analysis, multiplied by the corresponding category of each variable for each participant according to a mathematical expression. RESULTS: the variable that best predicted the risk of CM in the studied population was hair color (AUC: 0.71; 95% CI: 0.62-0.79). Other important factors were freckles, sunburn episodes, and skin and eye color. Consideration of other variables such as common nevi, elastosis, family history, and premalignant lesions did not improve the predictive ability of the models. CONCLUSION: The discriminating capacity of the proposed model proved to be superior or comparable to that of previous risk models proposed for CM.<br< FUNDAMENTOS: importantes fatores de risco para melanoma cutâneo são reconhecidos, mas escores padronizados para avaliação individual ainda precisam ser elaborados. OBJETIVOS: o objetivo deste estudo foi desenvolver um escore de risco de melanoma cutâneo para uma amostra brasileira. MÉTODOS: verificar as estimativas dos principais fatores de risco para melanoma, derivado de uma meta-análise (estudo de base italiano) e, externamente, validar em uma população do sul do Brasil por um estudo caso-controle. Um total de 117 indivíduos foram avaliados. RESULTADOS: a variável com maior poder preditivo para o risco de melanoma cutâneo na população estudada foi a cor do cabelo (AUC: 0,71, IC 95%: 0,62-0,79). Outros fatores importantes para o modelo foram: sardas, queimaduras solares, e cor de pele e cor dos olhos. Adicionando outras variáveis, como os nevos comuns, elastose, história familiar e lesões pré-malignas não houve melhora da capacidade preditiva. CONCLUSÃO: A capacidade discriminatória do modelo proposto mostrou-se superior ou comparável aos modelos de risco anteriores propostos para melanoma cutâneo.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatores de risco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melanoma</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nevos e melanomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risco</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nevi and melanomas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk factors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dermatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simeona Mastroeni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renan Rangel Bonamigo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franco Melchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paolo Pasquini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cristina Fortes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Anais Brasileiros de Dermatologia</subfield><subfield code="d">Sociedade Brasileira de Dermatologia, 2004</subfield><subfield code="g">88(2013), 2, Seite 226-232</subfield><subfield code="w">(DE-627)387478906</subfield><subfield code="w">(DE-600)2145422-X</subfield><subfield code="x">03650596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:226-232</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/237f4815038b4adbb9059e0a3ef3af37</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962013000200226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0365-0596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1806-4841</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="h">226-232</subfield></datafield></record></collection>
|
score |
7.4031916 |