Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership
Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from...
Ausführliche Beschreibung
Autor*in: |
Rafael E. Arévalo B. [verfasserIn] Esperanza N. Pulido R. [verfasserIn] Juan F. Solórzano G. [verfasserIn] Richard Soares [verfasserIn] Flavio Ruffinatto [verfasserIn] Prabu Ravindran [verfasserIn] Alex C. Wiedenhoeft [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Spanisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Colombia Forestal - Universidad Distrital Francisco Jose de Caldas, 2013, 24(2021), 1 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2021 ; number:1 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.14483/2256201X.16700 |
---|
Katalog-ID: |
DOAJ072776420 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ072776420 | ||
003 | DE-627 | ||
005 | 20230309111729.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||spa c | ||
024 | 7 | |a 10.14483/2256201X.16700 |2 doi | |
035 | |a (DE-627)DOAJ072776420 | ||
035 | |a (DE-599)DOAJ0d04b01e00114611a418d14ced82821b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a spa | ||
050 | 0 | |a SD1-669.5 | |
100 | 0 | |a Rafael E. Arévalo B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. | ||
650 | 4 | |a wood identification | |
650 | 4 | |a forensic wood anatomy | |
650 | 4 | |a deep learning | |
650 | 4 | |a transfer learning | |
650 | 4 | |a machine learning | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
653 | 0 | |a Forestry | |
700 | 0 | |a Esperanza N. Pulido R. |e verfasserin |4 aut | |
700 | 0 | |a Juan F. Solórzano G. |e verfasserin |4 aut | |
700 | 0 | |a Richard Soares |e verfasserin |4 aut | |
700 | 0 | |a Flavio Ruffinatto |e verfasserin |4 aut | |
700 | 0 | |a Prabu Ravindran |e verfasserin |4 aut | |
700 | 0 | |a Alex C. Wiedenhoeft |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Colombia Forestal |d Universidad Distrital Francisco Jose de Caldas, 2013 |g 24(2021), 1 |w (DE-627)75008958X |w (DE-600)2720400-5 |x 2256201X |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2021 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.14483/2256201X.16700 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0d04b01e00114611a418d14ced82821b |z kostenfrei |
856 | 4 | 0 | |u https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0120-0739 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2256-201X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_156 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2021 |e 1 |
author_variant |
r e a b reab e n p r enpr j f s g jfsg r s rs f r fr p r pr a c w acw |
---|---|
matchkey_str |
article:2256201X:2021----::mgdaeietfctooclminibruighxltoaroocne |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
SD |
publishDate |
2021 |
allfields |
10.14483/2256201X.16700 doi (DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b DE-627 ger DE-627 rakwb spa SD1-669.5 Rafael E. Arévalo B. verfasserin aut Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry Esperanza N. Pulido R. verfasserin aut Juan F. Solórzano G. verfasserin aut Richard Soares verfasserin aut Flavio Ruffinatto verfasserin aut Prabu Ravindran verfasserin aut Alex C. Wiedenhoeft verfasserin aut In Colombia Forestal Universidad Distrital Francisco Jose de Caldas, 2013 24(2021), 1 (DE-627)75008958X (DE-600)2720400-5 2256201X nnns volume:24 year:2021 number:1 https://doi.org/10.14483/2256201X.16700 kostenfrei https://doaj.org/article/0d04b01e00114611a418d14ced82821b kostenfrei https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 kostenfrei https://doaj.org/toc/0120-0739 Journal toc kostenfrei https://doaj.org/toc/2256-201X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 24 2021 1 |
spelling |
10.14483/2256201X.16700 doi (DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b DE-627 ger DE-627 rakwb spa SD1-669.5 Rafael E. Arévalo B. verfasserin aut Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry Esperanza N. Pulido R. verfasserin aut Juan F. Solórzano G. verfasserin aut Richard Soares verfasserin aut Flavio Ruffinatto verfasserin aut Prabu Ravindran verfasserin aut Alex C. Wiedenhoeft verfasserin aut In Colombia Forestal Universidad Distrital Francisco Jose de Caldas, 2013 24(2021), 1 (DE-627)75008958X (DE-600)2720400-5 2256201X nnns volume:24 year:2021 number:1 https://doi.org/10.14483/2256201X.16700 kostenfrei https://doaj.org/article/0d04b01e00114611a418d14ced82821b kostenfrei https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 kostenfrei https://doaj.org/toc/0120-0739 Journal toc kostenfrei https://doaj.org/toc/2256-201X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 24 2021 1 |
allfields_unstemmed |
10.14483/2256201X.16700 doi (DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b DE-627 ger DE-627 rakwb spa SD1-669.5 Rafael E. Arévalo B. verfasserin aut Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry Esperanza N. Pulido R. verfasserin aut Juan F. Solórzano G. verfasserin aut Richard Soares verfasserin aut Flavio Ruffinatto verfasserin aut Prabu Ravindran verfasserin aut Alex C. Wiedenhoeft verfasserin aut In Colombia Forestal Universidad Distrital Francisco Jose de Caldas, 2013 24(2021), 1 (DE-627)75008958X (DE-600)2720400-5 2256201X nnns volume:24 year:2021 number:1 https://doi.org/10.14483/2256201X.16700 kostenfrei https://doaj.org/article/0d04b01e00114611a418d14ced82821b kostenfrei https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 kostenfrei https://doaj.org/toc/0120-0739 Journal toc kostenfrei https://doaj.org/toc/2256-201X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 24 2021 1 |
allfieldsGer |
10.14483/2256201X.16700 doi (DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b DE-627 ger DE-627 rakwb spa SD1-669.5 Rafael E. Arévalo B. verfasserin aut Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry Esperanza N. Pulido R. verfasserin aut Juan F. Solórzano G. verfasserin aut Richard Soares verfasserin aut Flavio Ruffinatto verfasserin aut Prabu Ravindran verfasserin aut Alex C. Wiedenhoeft verfasserin aut In Colombia Forestal Universidad Distrital Francisco Jose de Caldas, 2013 24(2021), 1 (DE-627)75008958X (DE-600)2720400-5 2256201X nnns volume:24 year:2021 number:1 https://doi.org/10.14483/2256201X.16700 kostenfrei https://doaj.org/article/0d04b01e00114611a418d14ced82821b kostenfrei https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 kostenfrei https://doaj.org/toc/0120-0739 Journal toc kostenfrei https://doaj.org/toc/2256-201X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 24 2021 1 |
allfieldsSound |
10.14483/2256201X.16700 doi (DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b DE-627 ger DE-627 rakwb spa SD1-669.5 Rafael E. Arévalo B. verfasserin aut Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry Esperanza N. Pulido R. verfasserin aut Juan F. Solórzano G. verfasserin aut Richard Soares verfasserin aut Flavio Ruffinatto verfasserin aut Prabu Ravindran verfasserin aut Alex C. Wiedenhoeft verfasserin aut In Colombia Forestal Universidad Distrital Francisco Jose de Caldas, 2013 24(2021), 1 (DE-627)75008958X (DE-600)2720400-5 2256201X nnns volume:24 year:2021 number:1 https://doi.org/10.14483/2256201X.16700 kostenfrei https://doaj.org/article/0d04b01e00114611a418d14ced82821b kostenfrei https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 kostenfrei https://doaj.org/toc/0120-0739 Journal toc kostenfrei https://doaj.org/toc/2256-201X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 24 2021 1 |
language |
Spanish |
source |
In Colombia Forestal 24(2021), 1 volume:24 year:2021 number:1 |
sourceStr |
In Colombia Forestal 24(2021), 1 volume:24 year:2021 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wood identification forensic wood anatomy deep learning transfer learning machine learning Agriculture S Forestry |
isfreeaccess_bool |
true |
container_title |
Colombia Forestal |
authorswithroles_txt_mv |
Rafael E. Arévalo B. @@aut@@ Esperanza N. Pulido R. @@aut@@ Juan F. Solórzano G. @@aut@@ Richard Soares @@aut@@ Flavio Ruffinatto @@aut@@ Prabu Ravindran @@aut@@ Alex C. Wiedenhoeft @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
75008958X |
id |
DOAJ072776420 |
language_de |
spanisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072776420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309111729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||spa c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14483/2256201X.16700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072776420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0d04b01e00114611a418d14ced82821b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">spa</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SD1-669.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rafael E. Arévalo B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wood identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forensic wood anatomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Forestry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esperanza N. Pulido R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan F. Solórzano G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard Soares</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Flavio Ruffinatto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prabu Ravindran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex C. Wiedenhoeft</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Colombia Forestal</subfield><subfield code="d">Universidad Distrital Francisco Jose de Caldas, 2013</subfield><subfield code="g">24(2021), 1</subfield><subfield code="w">(DE-627)75008958X</subfield><subfield code="w">(DE-600)2720400-5</subfield><subfield code="x">2256201X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14483/2256201X.16700</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0d04b01e00114611a418d14ced82821b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-0739</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2256-201X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
Rafael E. Arévalo B. |
spellingShingle |
Rafael E. Arévalo B. misc SD1-669.5 misc wood identification misc forensic wood anatomy misc deep learning misc transfer learning misc machine learning misc Agriculture misc S misc Forestry Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
authorStr |
Rafael E. Arévalo B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75008958X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SD1-669 |
illustrated |
Not Illustrated |
issn |
2256201X |
topic_title |
SD1-669.5 Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership wood identification forensic wood anatomy deep learning transfer learning machine learning |
topic |
misc SD1-669.5 misc wood identification misc forensic wood anatomy misc deep learning misc transfer learning misc machine learning misc Agriculture misc S misc Forestry |
topic_unstemmed |
misc SD1-669.5 misc wood identification misc forensic wood anatomy misc deep learning misc transfer learning misc machine learning misc Agriculture misc S misc Forestry |
topic_browse |
misc SD1-669.5 misc wood identification misc forensic wood anatomy misc deep learning misc transfer learning misc machine learning misc Agriculture misc S misc Forestry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Colombia Forestal |
hierarchy_parent_id |
75008958X |
hierarchy_top_title |
Colombia Forestal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75008958X (DE-600)2720400-5 |
title |
Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
ctrlnum |
(DE-627)DOAJ072776420 (DE-599)DOAJ0d04b01e00114611a418d14ced82821b |
title_full |
Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
author_sort |
Rafael E. Arévalo B. |
journal |
Colombia Forestal |
journalStr |
Colombia Forestal |
callnumber-first-code |
S |
lang_code |
spa |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Rafael E. Arévalo B. Esperanza N. Pulido R. Juan F. Solórzano G. Richard Soares Flavio Ruffinatto Prabu Ravindran Alex C. Wiedenhoeft |
container_volume |
24 |
class |
SD1-669.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Rafael E. Arévalo B. |
doi_str_mv |
10.14483/2256201X.16700 |
author2-role |
verfasserin |
title_sort |
imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
callnumber |
SD1-669.5 |
title_auth |
Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
abstract |
Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. |
abstractGer |
Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. |
abstract_unstemmed |
Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_156 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership |
url |
https://doi.org/10.14483/2256201X.16700 https://doaj.org/article/0d04b01e00114611a418d14ced82821b https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700 https://doaj.org/toc/0120-0739 https://doaj.org/toc/2256-201X |
remote_bool |
true |
author2 |
Esperanza N. Pulido R. Juan F. Solórzano G. Richard Soares Flavio Ruffinatto Prabu Ravindran Alex C. Wiedenhoeft |
author2Str |
Esperanza N. Pulido R. Juan F. Solórzano G. Richard Soares Flavio Ruffinatto Prabu Ravindran Alex C. Wiedenhoeft |
ppnlink |
75008958X |
callnumber-subject |
SD - Forestry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.14483/2256201X.16700 |
callnumber-a |
SD1-669.5 |
up_date |
2024-07-03T14:00:03.702Z |
_version_ |
1803566662239125504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ072776420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309111729.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||spa c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14483/2256201X.16700</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ072776420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0d04b01e00114611a418d14ced82821b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">spa</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SD1-669.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rafael E. Arévalo B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Imaged based identification of colombian timbers using the xylotron: a proof of concept international partnership</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Field deployable computer vision wood identification systems can play a key role in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier to identify 14 commercial Colombian timbers. We imaged specimens from various xylaria outside Colombia, trained and evaluated an initial identification model, then collected additional images from a Colombian xylarium (BOFw), and incorporated those images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, demonstrating that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, developed on a timescale of months rather than years by leveraging international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wood identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">forensic wood anatomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Forestry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esperanza N. Pulido R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan F. Solórzano G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Richard Soares</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Flavio Ruffinatto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Prabu Ravindran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alex C. Wiedenhoeft</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Colombia Forestal</subfield><subfield code="d">Universidad Distrital Francisco Jose de Caldas, 2013</subfield><subfield code="g">24(2021), 1</subfield><subfield code="w">(DE-627)75008958X</subfield><subfield code="w">(DE-600)2720400-5</subfield><subfield code="x">2256201X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14483/2256201X.16700</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0d04b01e00114611a418d14ced82821b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://revistas.udistrital.edu.co/index.php/colfor/article/view/16700</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0120-0739</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2256-201X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_156</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4024982 |