Theory of nth-order linear general quantum difference equations
Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta...
Ausführliche Beschreibung
Autor*in: |
Nashat Faried [verfasserIn] Enas M. Shehata [verfasserIn] Rasha M. El Zafarani [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
A general quantum difference operator nth-order linear general quantum difference equations |
---|
Übergeordnetes Werk: |
In: Advances in Difference Equations - SpringerOpen, 2006, (2018), 1, Seite 24 |
---|---|
Übergeordnetes Werk: |
year:2018 ; number:1 ; pages:24 |
Links: |
---|
DOI / URN: |
10.1186/s13662-018-1715-7 |
---|
Katalog-ID: |
DOAJ07370251X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07370251X | ||
003 | DE-627 | ||
005 | 20230309120605.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-018-1715-7 |2 doi | |
035 | |a (DE-627)DOAJ07370251X | ||
035 | |a (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Nashat Faried |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theory of nth-order linear general quantum difference equations |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. | ||
650 | 4 | |a A general quantum difference operator | |
650 | 4 | |a nth-order linear general quantum difference equations | |
650 | 4 | |a β-Wronskian | |
650 | 4 | |a Homogeneous quantum difference equations | |
650 | 4 | |a Non-homogeneous quantum difference equations | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Enas M. Shehata |e verfasserin |4 aut | |
700 | 0 | |a Rasha M. El Zafarani |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Difference Equations |d SpringerOpen, 2006 |g (2018), 1, Seite 24 |w (DE-627)377755699 |w (DE-600)2132815-8 |x 16871847 |7 nnns |
773 | 1 | 8 | |g year:2018 |g number:1 |g pages:24 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13662-018-1715-7 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/39c9583a49ee44c0a233d72823087eec |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13662-018-1715-7 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-1847 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2018 |e 1 |h 24 |
author_variant |
n f nf e m s ems r m e z rmez |
---|---|
matchkey_str |
article:16871847:2018----::hoyftodriereeaqatmi |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QA |
publishDate |
2018 |
allfields |
10.1186/s13662-018-1715-7 doi (DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec DE-627 ger DE-627 rakwb eng QA1-939 Nashat Faried verfasserin aut Theory of nth-order linear general quantum difference equations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics Enas M. Shehata verfasserin aut Rasha M. El Zafarani verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 24 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:24 https://doi.org/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/article/39c9583a49ee44c0a233d72823087eec kostenfrei http://link.springer.com/article/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 24 |
spelling |
10.1186/s13662-018-1715-7 doi (DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec DE-627 ger DE-627 rakwb eng QA1-939 Nashat Faried verfasserin aut Theory of nth-order linear general quantum difference equations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics Enas M. Shehata verfasserin aut Rasha M. El Zafarani verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 24 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:24 https://doi.org/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/article/39c9583a49ee44c0a233d72823087eec kostenfrei http://link.springer.com/article/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 24 |
allfields_unstemmed |
10.1186/s13662-018-1715-7 doi (DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec DE-627 ger DE-627 rakwb eng QA1-939 Nashat Faried verfasserin aut Theory of nth-order linear general quantum difference equations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics Enas M. Shehata verfasserin aut Rasha M. El Zafarani verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 24 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:24 https://doi.org/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/article/39c9583a49ee44c0a233d72823087eec kostenfrei http://link.springer.com/article/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 24 |
allfieldsGer |
10.1186/s13662-018-1715-7 doi (DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec DE-627 ger DE-627 rakwb eng QA1-939 Nashat Faried verfasserin aut Theory of nth-order linear general quantum difference equations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics Enas M. Shehata verfasserin aut Rasha M. El Zafarani verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 24 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:24 https://doi.org/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/article/39c9583a49ee44c0a233d72823087eec kostenfrei http://link.springer.com/article/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 24 |
allfieldsSound |
10.1186/s13662-018-1715-7 doi (DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec DE-627 ger DE-627 rakwb eng QA1-939 Nashat Faried verfasserin aut Theory of nth-order linear general quantum difference equations 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics Enas M. Shehata verfasserin aut Rasha M. El Zafarani verfasserin aut In Advances in Difference Equations SpringerOpen, 2006 (2018), 1, Seite 24 (DE-627)377755699 (DE-600)2132815-8 16871847 nnns year:2018 number:1 pages:24 https://doi.org/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/article/39c9583a49ee44c0a233d72823087eec kostenfrei http://link.springer.com/article/10.1186/s13662-018-1715-7 kostenfrei https://doaj.org/toc/1687-1847 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 1 24 |
language |
English |
source |
In Advances in Difference Equations (2018), 1, Seite 24 year:2018 number:1 pages:24 |
sourceStr |
In Advances in Difference Equations (2018), 1, Seite 24 year:2018 number:1 pages:24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations Mathematics |
isfreeaccess_bool |
true |
container_title |
Advances in Difference Equations |
authorswithroles_txt_mv |
Nashat Faried @@aut@@ Enas M. Shehata @@aut@@ Rasha M. El Zafarani @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
377755699 |
id |
DOAJ07370251X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07370251X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309120605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1715-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07370251X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39c9583a49ee44c0a233d72823087eec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nashat Faried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of nth-order linear general quantum difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A general quantum difference operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nth-order linear general quantum difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β-Wronskian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous quantum difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-homogeneous quantum difference equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enas M. Shehata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rasha M. El Zafarani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Difference Equations</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2018), 1, Seite 24</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">16871847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13662-018-1715-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39c9583a49ee44c0a233d72823087eec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13662-018-1715-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-1847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">24</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Nashat Faried |
spellingShingle |
Nashat Faried misc QA1-939 misc A general quantum difference operator misc nth-order linear general quantum difference equations misc β-Wronskian misc Homogeneous quantum difference equations misc Non-homogeneous quantum difference equations misc Mathematics Theory of nth-order linear general quantum difference equations |
authorStr |
Nashat Faried |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
16871847 |
topic_title |
QA1-939 Theory of nth-order linear general quantum difference equations A general quantum difference operator nth-order linear general quantum difference equations β-Wronskian Homogeneous quantum difference equations Non-homogeneous quantum difference equations |
topic |
misc QA1-939 misc A general quantum difference operator misc nth-order linear general quantum difference equations misc β-Wronskian misc Homogeneous quantum difference equations misc Non-homogeneous quantum difference equations misc Mathematics |
topic_unstemmed |
misc QA1-939 misc A general quantum difference operator misc nth-order linear general quantum difference equations misc β-Wronskian misc Homogeneous quantum difference equations misc Non-homogeneous quantum difference equations misc Mathematics |
topic_browse |
misc QA1-939 misc A general quantum difference operator misc nth-order linear general quantum difference equations misc β-Wronskian misc Homogeneous quantum difference equations misc Non-homogeneous quantum difference equations misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Difference Equations |
hierarchy_parent_id |
377755699 |
hierarchy_top_title |
Advances in Difference Equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
Theory of nth-order linear general quantum difference equations |
ctrlnum |
(DE-627)DOAJ07370251X (DE-599)DOAJ39c9583a49ee44c0a233d72823087eec |
title_full |
Theory of nth-order linear general quantum difference equations |
author_sort |
Nashat Faried |
journal |
Advances in Difference Equations |
journalStr |
Advances in Difference Equations |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
24 |
author_browse |
Nashat Faried Enas M. Shehata Rasha M. El Zafarani |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Nashat Faried |
doi_str_mv |
10.1186/s13662-018-1715-7 |
author2-role |
verfasserin |
title_sort |
theory of nth-order linear general quantum difference equations |
callnumber |
QA1-939 |
title_auth |
Theory of nth-order linear general quantum difference equations |
abstract |
Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. |
abstractGer |
Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. |
abstract_unstemmed |
Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Theory of nth-order linear general quantum difference equations |
url |
https://doi.org/10.1186/s13662-018-1715-7 https://doaj.org/article/39c9583a49ee44c0a233d72823087eec http://link.springer.com/article/10.1186/s13662-018-1715-7 https://doaj.org/toc/1687-1847 |
remote_bool |
true |
author2 |
Enas M. Shehata Rasha M. El Zafarani |
author2Str |
Enas M. Shehata Rasha M. El Zafarani |
ppnlink |
377755699 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-018-1715-7 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T19:09:33.820Z |
_version_ |
1803586134419177472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07370251X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309120605.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1715-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07370251X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ39c9583a49ee44c0a233d72823087eec</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Nashat Faried</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of nth-order linear general quantum difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we derive the solutions of homogeneous and non-homogeneous nth-order linear general quantum difference equations based on the general quantum difference operator Dβ $D_{\beta }$ which is defined by Dβf(t)=(f(β(t))−f(t))/(β(t)−t) $D_{\beta }{f(t)}= (f(\beta (t))-f(t) )/ (\beta (t)-t )$, β(t)≠t $\beta (t)\neq t$, where β is a strictly increasing continuous function defined on an interval I⊆R $I\subseteq \mathbb{R}$ that has only one fixed point s0∈I $s_{0}\in {I}$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with Dβ $D_{\beta }$, and Liouville’s formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A general quantum difference operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nth-order linear general quantum difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">β-Wronskian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous quantum difference equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-homogeneous quantum difference equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enas M. Shehata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rasha M. El Zafarani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Difference Equations</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2018), 1, Seite 24</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">16871847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13662-018-1715-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/39c9583a49ee44c0a233d72823087eec</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13662-018-1715-7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-1847</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">24</subfield></datafield></record></collection>
|
score |
7.4014044 |