Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones
The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance...
Ausführliche Beschreibung
Autor*in: |
Rahmatullah Jan [verfasserIn] Muhammad Aaqil Khan [verfasserIn] Sajjad Asaf [verfasserIn] Lubna [verfasserIn] In-Jung Lee [verfasserIn] Kyung Min Kim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 8(2019), 10, p 363 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2019 ; number:10, p 363 |
Links: |
---|
DOI / URN: |
10.3390/plants8100363 |
---|
Katalog-ID: |
DOAJ073764221 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ073764221 | ||
003 | DE-627 | ||
005 | 20230309120858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants8100363 |2 doi | |
035 | |a (DE-627)DOAJ073764221 | ||
035 | |a (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Rahmatullah Jan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. | ||
650 | 4 | |a Exiguobacterium indicum | |
650 | 4 | |a OsMTP1 | |
650 | 4 | |a phytohormone | |
650 | 4 | |a synergistic | |
650 | 4 | |a detoxification | |
653 | 0 | |a Botany | |
700 | 0 | |a Muhammad Aaqil Khan |e verfasserin |4 aut | |
700 | 0 | |a Sajjad Asaf |e verfasserin |4 aut | |
700 | 0 | |a Lubna |e verfasserin |4 aut | |
700 | 0 | |a In-Jung Lee |e verfasserin |4 aut | |
700 | 0 | |a Kyung Min Kim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 8(2019), 10, p 363 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2019 |g number:10, p 363 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants8100363 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/8/10/363 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2019 |e 10, p 363 |
author_variant |
r j rj m a k mak s a sa l i j l ijl k m k kmk |
---|---|
matchkey_str |
article:22237747:2019----::earssatnohtcatraeuecdimikloiiynehneepesoomtlteseaegnsihmrvdrwhfrzstvvaeu |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QK |
publishDate |
2019 |
allfields |
10.3390/plants8100363 doi (DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd DE-627 ger DE-627 rakwb eng QK1-989 Rahmatullah Jan verfasserin aut Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany Muhammad Aaqil Khan verfasserin aut Sajjad Asaf verfasserin aut Lubna verfasserin aut In-Jung Lee verfasserin aut Kyung Min Kim verfasserin aut In Plants MDPI AG, 2013 8(2019), 10, p 363 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:8 year:2019 number:10, p 363 https://doi.org/10.3390/plants8100363 kostenfrei https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd kostenfrei https://www.mdpi.com/2223-7747/8/10/363 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 10, p 363 |
spelling |
10.3390/plants8100363 doi (DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd DE-627 ger DE-627 rakwb eng QK1-989 Rahmatullah Jan verfasserin aut Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany Muhammad Aaqil Khan verfasserin aut Sajjad Asaf verfasserin aut Lubna verfasserin aut In-Jung Lee verfasserin aut Kyung Min Kim verfasserin aut In Plants MDPI AG, 2013 8(2019), 10, p 363 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:8 year:2019 number:10, p 363 https://doi.org/10.3390/plants8100363 kostenfrei https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd kostenfrei https://www.mdpi.com/2223-7747/8/10/363 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 10, p 363 |
allfields_unstemmed |
10.3390/plants8100363 doi (DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd DE-627 ger DE-627 rakwb eng QK1-989 Rahmatullah Jan verfasserin aut Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany Muhammad Aaqil Khan verfasserin aut Sajjad Asaf verfasserin aut Lubna verfasserin aut In-Jung Lee verfasserin aut Kyung Min Kim verfasserin aut In Plants MDPI AG, 2013 8(2019), 10, p 363 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:8 year:2019 number:10, p 363 https://doi.org/10.3390/plants8100363 kostenfrei https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd kostenfrei https://www.mdpi.com/2223-7747/8/10/363 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 10, p 363 |
allfieldsGer |
10.3390/plants8100363 doi (DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd DE-627 ger DE-627 rakwb eng QK1-989 Rahmatullah Jan verfasserin aut Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany Muhammad Aaqil Khan verfasserin aut Sajjad Asaf verfasserin aut Lubna verfasserin aut In-Jung Lee verfasserin aut Kyung Min Kim verfasserin aut In Plants MDPI AG, 2013 8(2019), 10, p 363 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:8 year:2019 number:10, p 363 https://doi.org/10.3390/plants8100363 kostenfrei https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd kostenfrei https://www.mdpi.com/2223-7747/8/10/363 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 10, p 363 |
allfieldsSound |
10.3390/plants8100363 doi (DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd DE-627 ger DE-627 rakwb eng QK1-989 Rahmatullah Jan verfasserin aut Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany Muhammad Aaqil Khan verfasserin aut Sajjad Asaf verfasserin aut Lubna verfasserin aut In-Jung Lee verfasserin aut Kyung Min Kim verfasserin aut In Plants MDPI AG, 2013 8(2019), 10, p 363 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:8 year:2019 number:10, p 363 https://doi.org/10.3390/plants8100363 kostenfrei https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd kostenfrei https://www.mdpi.com/2223-7747/8/10/363 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 10, p 363 |
language |
English |
source |
In Plants 8(2019), 10, p 363 volume:8 year:2019 number:10, p 363 |
sourceStr |
In Plants 8(2019), 10, p 363 volume:8 year:2019 number:10, p 363 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Rahmatullah Jan @@aut@@ Muhammad Aaqil Khan @@aut@@ Sajjad Asaf @@aut@@ Lubna @@aut@@ In-Jung Lee @@aut@@ Kyung Min Kim @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ073764221 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ073764221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309120858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants8100363</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ073764221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rahmatullah Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exiguobacterium indicum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OsMTP1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytohormone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synergistic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detoxification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Aaqil Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sajjad Asaf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lubna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">In-Jung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyung Min Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2019), 10, p 363</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10, p 363</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants8100363</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/8/10/363</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">10, p 363</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Rahmatullah Jan |
spellingShingle |
Rahmatullah Jan misc QK1-989 misc Exiguobacterium indicum misc OsMTP1 misc phytohormone misc synergistic misc detoxification misc Botany Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
authorStr |
Rahmatullah Jan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones Exiguobacterium indicum OsMTP1 phytohormone synergistic detoxification |
topic |
misc QK1-989 misc Exiguobacterium indicum misc OsMTP1 misc phytohormone misc synergistic misc detoxification misc Botany |
topic_unstemmed |
misc QK1-989 misc Exiguobacterium indicum misc OsMTP1 misc phytohormone misc synergistic misc detoxification misc Botany |
topic_browse |
misc QK1-989 misc Exiguobacterium indicum misc OsMTP1 misc phytohormone misc synergistic misc detoxification misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
ctrlnum |
(DE-627)DOAJ073764221 (DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd |
title_full |
Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
author_sort |
Rahmatullah Jan |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Rahmatullah Jan Muhammad Aaqil Khan Sajjad Asaf Lubna In-Jung Lee Kyung Min Kim |
container_volume |
8 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Rahmatullah Jan |
doi_str_mv |
10.3390/plants8100363 |
author2-role |
verfasserin |
title_sort |
metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of oryza sativa, via regulating its antioxidant machinery and endogenous hormones |
callnumber |
QK1-989 |
title_auth |
Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
abstract |
The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. |
abstractGer |
The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. |
abstract_unstemmed |
The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 363 |
title_short |
Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones |
url |
https://doi.org/10.3390/plants8100363 https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd https://www.mdpi.com/2223-7747/8/10/363 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Muhammad Aaqil Khan Sajjad Asaf Lubna In-Jung Lee Kyung Min Kim |
author2Str |
Muhammad Aaqil Khan Sajjad Asaf Lubna In-Jung Lee Kyung Min Kim |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants8100363 |
callnumber-a |
QK1-989 |
up_date |
2024-07-03T19:29:43.750Z |
_version_ |
1803587403123785728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ073764221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309120858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants8100363</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ073764221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7e33f7128ba48748c36a0280f6a59bd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rahmatullah Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal Resistant Endophytic Bacteria Reduces Cadmium, Nickel Toxicity, and Enhances Expression of Metal Stress Related Genes with Improved Growth of Oryza Sativa, via Regulating Its Antioxidant Machinery and Endogenous Hormones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The tolerance of plant growth-promoting endophytes (PGPEs) against various concentrations of cadmium (Cd) and nickel (Ni) was investigated. Two glutathione-producing bacterial strains (Enterobacter ludwigii SAK5 and Exiguobacterium indicum SA22) were screened for Cd and Ni accumulation and tolerance in contaminated media, which showed resistance up to 1.0 mM. Both strains were further evaluated by inoculating specific plants with the bacteria for five days prior to heavy metal treatment (0.5 and 1.0 mM). The enhancement of biomass and growth attributes such as the root length, shoot length, root fresh weight, shoot fresh weight, and chlorophyll content were compared between treated inoculated plants and treated non-inoculated plants. Both strains significantly increased the accumulation of Cd and Ni in inoculated plants. The accumulation of both heavy metals was higher in the roots than in the shoots, however; Ni accumulation was greater than Cd. Heavy metal stress-responsive genes such as OsGST, OsMTP1, and OsPCS1 were significantly upregulated in treated non-inoculated plants compared with treated inoculated plants, suggesting that both strains reduced heavy metal stress. Similarly, abscisic acid (ABA) was increased with increased heavy metal concentration; however, it was reduced in inoculated plants compared with non-inoculated plants. Salicylic acid (SA) was found to exert synergistic effects with ABA. The application of suitable endophytic bacteria can protect against heavy metal hyperaccumulation by enhancing detoxification mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exiguobacterium indicum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OsMTP1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytohormone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synergistic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">detoxification</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Muhammad Aaqil Khan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sajjad Asaf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lubna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">In-Jung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kyung Min Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">8(2019), 10, p 363</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10, p 363</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants8100363</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7e33f7128ba48748c36a0280f6a59bd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/8/10/363</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">10, p 363</subfield></datafield></record></collection>
|
score |
7.3993607 |