Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data
Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing...
Ausführliche Beschreibung
Autor*in: |
Shi Qiu [verfasserIn] Yukun Lin [verfasserIn] Rong Shang [verfasserIn] Junxue Zhang [verfasserIn] Lei Ma [verfasserIn] Zhe Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 11(2018), 1, p 51 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2018 ; number:1, p 51 |
Links: |
---|
DOI / URN: |
10.3390/rs11010051 |
---|
Katalog-ID: |
DOAJ073873462 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ073873462 | ||
003 | DE-627 | ||
005 | 20230309121341.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs11010051 |2 doi | |
035 | |a (DE-627)DOAJ073873462 | ||
035 | |a (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Shi Qiu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. | ||
650 | 4 | |a Landsat time series | |
650 | 4 | |a Analysis Ready Data | |
650 | 4 | |a cloud and cloud shadow detection | |
650 | 4 | |a BRDF correction | |
650 | 4 | |a topographic correction | |
650 | 4 | |a resampled data | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Yukun Lin |e verfasserin |4 aut | |
700 | 0 | |a Rong Shang |e verfasserin |4 aut | |
700 | 0 | |a Junxue Zhang |e verfasserin |4 aut | |
700 | 0 | |a Lei Ma |e verfasserin |4 aut | |
700 | 0 | |a Zhe Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 11(2018), 1, p 51 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2018 |g number:1, p 51 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs11010051 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-4292/11/1/51 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2018 |e 1, p 51 |
author_variant |
s q sq y l yl r s rs j z jz l m lm z z zz |
---|---|
matchkey_str |
article:20724292:2018----::aigadatmsrecnitneautnadmrvnl |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/rs11010051 doi (DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc DE-627 ger DE-627 rakwb eng Shi Qiu verfasserin aut Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q Yukun Lin verfasserin aut Rong Shang verfasserin aut Junxue Zhang verfasserin aut Lei Ma verfasserin aut Zhe Zhu verfasserin aut In Remote Sensing MDPI AG, 2009 11(2018), 1, p 51 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2018 number:1, p 51 https://doi.org/10.3390/rs11010051 kostenfrei https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc kostenfrei http://www.mdpi.com/2072-4292/11/1/51 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2018 1, p 51 |
spelling |
10.3390/rs11010051 doi (DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc DE-627 ger DE-627 rakwb eng Shi Qiu verfasserin aut Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q Yukun Lin verfasserin aut Rong Shang verfasserin aut Junxue Zhang verfasserin aut Lei Ma verfasserin aut Zhe Zhu verfasserin aut In Remote Sensing MDPI AG, 2009 11(2018), 1, p 51 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2018 number:1, p 51 https://doi.org/10.3390/rs11010051 kostenfrei https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc kostenfrei http://www.mdpi.com/2072-4292/11/1/51 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2018 1, p 51 |
allfields_unstemmed |
10.3390/rs11010051 doi (DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc DE-627 ger DE-627 rakwb eng Shi Qiu verfasserin aut Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q Yukun Lin verfasserin aut Rong Shang verfasserin aut Junxue Zhang verfasserin aut Lei Ma verfasserin aut Zhe Zhu verfasserin aut In Remote Sensing MDPI AG, 2009 11(2018), 1, p 51 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2018 number:1, p 51 https://doi.org/10.3390/rs11010051 kostenfrei https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc kostenfrei http://www.mdpi.com/2072-4292/11/1/51 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2018 1, p 51 |
allfieldsGer |
10.3390/rs11010051 doi (DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc DE-627 ger DE-627 rakwb eng Shi Qiu verfasserin aut Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q Yukun Lin verfasserin aut Rong Shang verfasserin aut Junxue Zhang verfasserin aut Lei Ma verfasserin aut Zhe Zhu verfasserin aut In Remote Sensing MDPI AG, 2009 11(2018), 1, p 51 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2018 number:1, p 51 https://doi.org/10.3390/rs11010051 kostenfrei https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc kostenfrei http://www.mdpi.com/2072-4292/11/1/51 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2018 1, p 51 |
allfieldsSound |
10.3390/rs11010051 doi (DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc DE-627 ger DE-627 rakwb eng Shi Qiu verfasserin aut Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q Yukun Lin verfasserin aut Rong Shang verfasserin aut Junxue Zhang verfasserin aut Lei Ma verfasserin aut Zhe Zhu verfasserin aut In Remote Sensing MDPI AG, 2009 11(2018), 1, p 51 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:11 year:2018 number:1, p 51 https://doi.org/10.3390/rs11010051 kostenfrei https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc kostenfrei http://www.mdpi.com/2072-4292/11/1/51 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2018 1, p 51 |
language |
English |
source |
In Remote Sensing 11(2018), 1, p 51 volume:11 year:2018 number:1, p 51 |
sourceStr |
In Remote Sensing 11(2018), 1, p 51 volume:11 year:2018 number:1, p 51 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Shi Qiu @@aut@@ Yukun Lin @@aut@@ Rong Shang @@aut@@ Junxue Zhang @@aut@@ Lei Ma @@aut@@ Zhe Zhu @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ073873462 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ073873462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309121341.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11010051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ073873462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shi Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis Ready Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud and cloud shadow detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BRDF correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topographic correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resampled data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yukun Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Shang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2018), 1, p 51</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1, p 51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11010051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/11/1/51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">1, p 51</subfield></datafield></record></collection>
|
author |
Shi Qiu |
spellingShingle |
Shi Qiu misc Landsat time series misc Analysis Ready Data misc cloud and cloud shadow detection misc BRDF correction misc topographic correction misc resampled data misc Science misc Q Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
authorStr |
Shi Qiu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data Landsat time series Analysis Ready Data cloud and cloud shadow detection BRDF correction topographic correction resampled data |
topic |
misc Landsat time series misc Analysis Ready Data misc cloud and cloud shadow detection misc BRDF correction misc topographic correction misc resampled data misc Science misc Q |
topic_unstemmed |
misc Landsat time series misc Analysis Ready Data misc cloud and cloud shadow detection misc BRDF correction misc topographic correction misc resampled data misc Science misc Q |
topic_browse |
misc Landsat time series misc Analysis Ready Data misc cloud and cloud shadow detection misc BRDF correction misc topographic correction misc resampled data misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
ctrlnum |
(DE-627)DOAJ073873462 (DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc |
title_full |
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
author_sort |
Shi Qiu |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Shi Qiu Yukun Lin Rong Shang Junxue Zhang Lei Ma Zhe Zhu |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Shi Qiu |
doi_str_mv |
10.3390/rs11010051 |
author2-role |
verfasserin |
title_sort |
making landsat time series consistent: evaluating and improving landsat analysis ready data |
title_auth |
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
abstract |
Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. |
abstractGer |
Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. |
abstract_unstemmed |
Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1, p 51 |
title_short |
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data |
url |
https://doi.org/10.3390/rs11010051 https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc http://www.mdpi.com/2072-4292/11/1/51 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Yukun Lin Rong Shang Junxue Zhang Lei Ma Zhe Zhu |
author2Str |
Yukun Lin Rong Shang Junxue Zhang Lei Ma Zhe Zhu |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs11010051 |
up_date |
2024-07-03T20:05:01.318Z |
_version_ |
1803589623554768896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ073873462</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309121341.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs11010051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ073873462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ15ff7b9468a64e1ab8b3f5b4f00f6fdc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shi Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recently, the United States Geological Survey (USGS) has released a new dataset, called Landsat Analysis Ready Data (ARD), which is designed specifically for facilitating time series analysis. In this study, we evaluated the temporal consistency of this new dataset and recommended several processing streamlines for improving data consistency. Specifically, we examined the impacts of data resampling, cloud/cloud shadow detection, Bidirectional Reflectance Distribution Function (BRDF) correction, and topographic correction on the temporal consistency of the Landsat Time Series (LTS). We have four major observations. First, single-resampled data (ARD) are generally more consistent than double-resampled data (re-projected Collection 1 data), but the difference is very minor. Second, the improved cloud and cloud shadow detection approach (e.g., Fmask 4.0 vs. 3.3) moderately increased data consistency. Third, BRDF correction contributed the most in making LTS consistent. Finally, we corrected the topographic effects by using several widely used algorithms, including Sun-Canopy-Sensor (SCS), a semiempirical SCS (SCS+C), and Illumination Correction (IC) algorithms, however they were found to have very limited or even negative impacts on the consistency of LTS. Therefore, we recommend using Landsat ARD with the improved cloud and cloud shadow detection approach (Fmask 4.0), and with BRDF correction for routine time series analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landsat time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis Ready Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud and cloud shadow detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BRDF correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topographic correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resampled data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yukun Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Shang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junxue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhe Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">11(2018), 1, p 51</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1, p 51</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs11010051</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/15ff7b9468a64e1ab8b3f5b4f00f6fdc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/11/1/51</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">1, p 51</subfield></datafield></record></collection>
|
score |
7.401165 |