Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems
With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at d...
Ausführliche Beschreibung
Autor*in: |
Meher Preetam Korukonda [verfasserIn] Swaroop R. Mishra [verfasserIn] Ketan Rajawat [verfasserIn] Laxmidhar Behera [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
hybrid switching system and controller design |
---|
Übergeordnetes Werk: |
In: IET Cyber-Physical Systems - Wiley, 2018, (2018) |
---|---|
Übergeordnetes Werk: |
year:2018 |
Links: |
---|
DOI / URN: |
10.1049/iet-cps.2017.0078 |
---|
Katalog-ID: |
DOAJ074308440 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ074308440 | ||
003 | DE-627 | ||
005 | 20230309123519.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/iet-cps.2017.0078 |2 doi | |
035 | |a (DE-627)DOAJ074308440 | ||
035 | |a (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7885-7895 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Meher Preetam Korukonda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. | ||
650 | 4 | |a distributed power generation | |
650 | 4 | |a Lyapunov methods | |
650 | 4 | |a concave programming | |
650 | 4 | |a convex programming | |
650 | 4 | |a smart power grids | |
650 | 4 | |a hybrid adaptive framework | |
650 | 4 | |a coordinated control | |
650 | 4 | |a distributed generators | |
650 | 4 | |a cyber-physical energy systems | |
650 | 4 | |a ICT technology | |
650 | 4 | |a smart grid | |
650 | 4 | |a hybrid switching system and controller design | |
650 | 4 | |a optimisation formulations | |
650 | 4 | |a Lyapunov function | |
650 | 4 | |a non-convex formulation | |
650 | 4 | |a convex problems | |
650 | 4 | |a block coordinate descent methodology | |
650 | 4 | |a delay-existent cases | |
650 | 4 | |a delay-free cases | |
653 | 0 | |a Computer engineering. Computer hardware | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Swaroop R. Mishra |e verfasserin |4 aut | |
700 | 0 | |a Ketan Rajawat |e verfasserin |4 aut | |
700 | 0 | |a Laxmidhar Behera |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IET Cyber-Physical Systems |d Wiley, 2018 |g (2018) |w (DE-627)873280709 |w (DE-600)2875914-X |x 23983396 |7 nnns |
773 | 1 | 8 | |g year:2018 |
856 | 4 | 0 | |u https://doi.org/10.1049/iet-cps.2017.0078 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1562971387684f42b0a4d2964e926df9 |z kostenfrei |
856 | 4 | 0 | |u https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2398-3396 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2018 |
author_variant |
m p k mpk s r m srm k r kr l b lb |
---|---|
matchkey_str |
article:23983396:2018----::yrddpiermwrfroriaecnrlfitiuegnrtri |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TK |
publishDate |
2018 |
allfields |
10.1049/iet-cps.2017.0078 doi (DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Meher Preetam Korukonda verfasserin aut Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science Swaroop R. Mishra verfasserin aut Ketan Rajawat verfasserin aut Laxmidhar Behera verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 (2018) (DE-627)873280709 (DE-600)2875914-X 23983396 nnns year:2018 https://doi.org/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/article/1562971387684f42b0a4d2964e926df9 kostenfrei https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
spelling |
10.1049/iet-cps.2017.0078 doi (DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Meher Preetam Korukonda verfasserin aut Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science Swaroop R. Mishra verfasserin aut Ketan Rajawat verfasserin aut Laxmidhar Behera verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 (2018) (DE-627)873280709 (DE-600)2875914-X 23983396 nnns year:2018 https://doi.org/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/article/1562971387684f42b0a4d2964e926df9 kostenfrei https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfields_unstemmed |
10.1049/iet-cps.2017.0078 doi (DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Meher Preetam Korukonda verfasserin aut Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science Swaroop R. Mishra verfasserin aut Ketan Rajawat verfasserin aut Laxmidhar Behera verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 (2018) (DE-627)873280709 (DE-600)2875914-X 23983396 nnns year:2018 https://doi.org/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/article/1562971387684f42b0a4d2964e926df9 kostenfrei https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfieldsGer |
10.1049/iet-cps.2017.0078 doi (DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Meher Preetam Korukonda verfasserin aut Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science Swaroop R. Mishra verfasserin aut Ketan Rajawat verfasserin aut Laxmidhar Behera verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 (2018) (DE-627)873280709 (DE-600)2875914-X 23983396 nnns year:2018 https://doi.org/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/article/1562971387684f42b0a4d2964e926df9 kostenfrei https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
allfieldsSound |
10.1049/iet-cps.2017.0078 doi (DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 DE-627 ger DE-627 rakwb eng TK7885-7895 QA75.5-76.95 Meher Preetam Korukonda verfasserin aut Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science Swaroop R. Mishra verfasserin aut Ketan Rajawat verfasserin aut Laxmidhar Behera verfasserin aut In IET Cyber-Physical Systems Wiley, 2018 (2018) (DE-627)873280709 (DE-600)2875914-X 23983396 nnns year:2018 https://doi.org/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/article/1562971387684f42b0a4d2964e926df9 kostenfrei https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 kostenfrei https://doaj.org/toc/2398-3396 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2018 |
language |
English |
source |
In IET Cyber-Physical Systems (2018) year:2018 |
sourceStr |
In IET Cyber-Physical Systems (2018) year:2018 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases Computer engineering. Computer hardware Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
IET Cyber-Physical Systems |
authorswithroles_txt_mv |
Meher Preetam Korukonda @@aut@@ Swaroop R. Mishra @@aut@@ Ketan Rajawat @@aut@@ Laxmidhar Behera @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
873280709 |
id |
DOAJ074308440 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074308440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309123519.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/iet-cps.2017.0078</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074308440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1562971387684f42b0a4d2964e926df9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meher Preetam Korukonda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concave programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid adaptive framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordinated control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyber-physical energy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICT technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid switching system and controller design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimisation formulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-convex formulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">block coordinate descent methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">delay-existent cases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">delay-free cases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Swaroop R. Mishra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ketan Rajawat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laxmidhar Behera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Cyber-Physical Systems</subfield><subfield code="d">Wiley, 2018</subfield><subfield code="g">(2018)</subfield><subfield code="w">(DE-627)873280709</subfield><subfield code="w">(DE-600)2875914-X</subfield><subfield code="x">23983396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/iet-cps.2017.0078</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1562971387684f42b0a4d2964e926df9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-3396</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Meher Preetam Korukonda |
spellingShingle |
Meher Preetam Korukonda misc TK7885-7895 misc QA75.5-76.95 misc distributed power generation misc Lyapunov methods misc concave programming misc convex programming misc smart power grids misc hybrid adaptive framework misc coordinated control misc distributed generators misc cyber-physical energy systems misc ICT technology misc smart grid misc hybrid switching system and controller design misc optimisation formulations misc Lyapunov function misc non-convex formulation misc convex problems misc block coordinate descent methodology misc delay-existent cases misc delay-free cases misc Computer engineering. Computer hardware misc Electronic computers. Computer science Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
authorStr |
Meher Preetam Korukonda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)873280709 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7885-7895 |
illustrated |
Not Illustrated |
issn |
23983396 |
topic_title |
TK7885-7895 QA75.5-76.95 Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems distributed power generation Lyapunov methods concave programming convex programming smart power grids hybrid adaptive framework coordinated control distributed generators cyber-physical energy systems ICT technology smart grid hybrid switching system and controller design optimisation formulations Lyapunov function non-convex formulation convex problems block coordinate descent methodology delay-existent cases delay-free cases |
topic |
misc TK7885-7895 misc QA75.5-76.95 misc distributed power generation misc Lyapunov methods misc concave programming misc convex programming misc smart power grids misc hybrid adaptive framework misc coordinated control misc distributed generators misc cyber-physical energy systems misc ICT technology misc smart grid misc hybrid switching system and controller design misc optimisation formulations misc Lyapunov function misc non-convex formulation misc convex problems misc block coordinate descent methodology misc delay-existent cases misc delay-free cases misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_unstemmed |
misc TK7885-7895 misc QA75.5-76.95 misc distributed power generation misc Lyapunov methods misc concave programming misc convex programming misc smart power grids misc hybrid adaptive framework misc coordinated control misc distributed generators misc cyber-physical energy systems misc ICT technology misc smart grid misc hybrid switching system and controller design misc optimisation formulations misc Lyapunov function misc non-convex formulation misc convex problems misc block coordinate descent methodology misc delay-existent cases misc delay-free cases misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
topic_browse |
misc TK7885-7895 misc QA75.5-76.95 misc distributed power generation misc Lyapunov methods misc concave programming misc convex programming misc smart power grids misc hybrid adaptive framework misc coordinated control misc distributed generators misc cyber-physical energy systems misc ICT technology misc smart grid misc hybrid switching system and controller design misc optimisation formulations misc Lyapunov function misc non-convex formulation misc convex problems misc block coordinate descent methodology misc delay-existent cases misc delay-free cases misc Computer engineering. Computer hardware misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IET Cyber-Physical Systems |
hierarchy_parent_id |
873280709 |
hierarchy_top_title |
IET Cyber-Physical Systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)873280709 (DE-600)2875914-X |
title |
Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
ctrlnum |
(DE-627)DOAJ074308440 (DE-599)DOAJ1562971387684f42b0a4d2964e926df9 |
title_full |
Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
author_sort |
Meher Preetam Korukonda |
journal |
IET Cyber-Physical Systems |
journalStr |
IET Cyber-Physical Systems |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Meher Preetam Korukonda Swaroop R. Mishra Ketan Rajawat Laxmidhar Behera |
class |
TK7885-7895 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Meher Preetam Korukonda |
doi_str_mv |
10.1049/iet-cps.2017.0078 |
author2-role |
verfasserin |
title_sort |
hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
callnumber |
TK7885-7895 |
title_auth |
Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
abstract |
With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. |
abstractGer |
With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. |
abstract_unstemmed |
With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems |
url |
https://doi.org/10.1049/iet-cps.2017.0078 https://doaj.org/article/1562971387684f42b0a4d2964e926df9 https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078 https://doaj.org/toc/2398-3396 |
remote_bool |
true |
author2 |
Swaroop R. Mishra Ketan Rajawat Laxmidhar Behera |
author2Str |
Swaroop R. Mishra Ketan Rajawat Laxmidhar Behera |
ppnlink |
873280709 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/iet-cps.2017.0078 |
callnumber-a |
TK7885-7895 |
up_date |
2024-07-03T22:26:59.770Z |
_version_ |
1803598555804336128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074308440</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309123519.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/iet-cps.2017.0078</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074308440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1562971387684f42b0a4d2964e926df9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7885-7895</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meher Preetam Korukonda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed power generation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">concave programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart power grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid adaptive framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coordinated control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cyber-physical energy systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICT technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">smart grid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid switching system and controller design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimisation formulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-convex formulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">block coordinate descent methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">delay-existent cases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">delay-free cases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer engineering. Computer hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Swaroop R. Mishra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ketan Rajawat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laxmidhar Behera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Cyber-Physical Systems</subfield><subfield code="d">Wiley, 2018</subfield><subfield code="g">(2018)</subfield><subfield code="w">(DE-627)873280709</subfield><subfield code="w">(DE-600)2875914-X</subfield><subfield code="x">23983396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2018</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/iet-cps.2017.0078</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1562971387684f42b0a4d2964e926df9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://digital-library.theiet.org/content/journals/10.1049/iet-cps.2017.0078</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2398-3396</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2018</subfield></datafield></record></collection>
|
score |
7.4030848 |