A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts
In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The meas...
Ausführliche Beschreibung
Autor*in: |
Žarko Kovač [verfasserIn] Trevor Platt [verfasserIn] Živana Ninčević Gladan [verfasserIn] Mira Morović [verfasserIn] Shubha Sathyendranath [verfasserIn] Dionysios E. Raitsos [verfasserIn] Branka Grbec [verfasserIn] Frano Matić [verfasserIn] Jere Veža [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 10(2018), 9, p 1460 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:9, p 1460 |
Links: |
---|
DOI / URN: |
10.3390/rs10091460 |
---|
Katalog-ID: |
DOAJ074406329 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ074406329 | ||
003 | DE-627 | ||
005 | 20230309124024.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs10091460 |2 doi | |
035 | |a (DE-627)DOAJ074406329 | ||
035 | |a (DE-599)DOAJ81a8e618d0574eab975382400880e94f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Žarko Kovač |e verfasserin |4 aut | |
245 | 1 | 2 | |a A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. | ||
650 | 4 | |a primary production | |
650 | 4 | |a photosynthesis parameters | |
650 | 4 | |a production model | |
650 | 4 | |a time-series | |
650 | 4 | |a regime shift | |
650 | 4 | |a Adriatic Sea | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Trevor Platt |e verfasserin |4 aut | |
700 | 0 | |a Živana Ninčević Gladan |e verfasserin |4 aut | |
700 | 0 | |a Mira Morović |e verfasserin |4 aut | |
700 | 0 | |a Shubha Sathyendranath |e verfasserin |4 aut | |
700 | 0 | |a Dionysios E. Raitsos |e verfasserin |4 aut | |
700 | 0 | |a Branka Grbec |e verfasserin |4 aut | |
700 | 0 | |a Frano Matić |e verfasserin |4 aut | |
700 | 0 | |a Jere Veža |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 10(2018), 9, p 1460 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:9, p 1460 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs10091460 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/81a8e618d0574eab975382400880e94f |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2072-4292/10/9/1460 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 9, p 1460 |
author_variant |
ž k žk t p tp ž n g žng m m mm s s ss d e r der b g bg f m fm j v jv |
---|---|
matchkey_str |
article:20724292:2018----::5yatmsresainopiayrdcinnharaisaaaorcinxrcinfhts |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.3390/rs10091460 doi (DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f DE-627 ger DE-627 rakwb eng Žarko Kovač verfasserin aut A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q Trevor Platt verfasserin aut Živana Ninčević Gladan verfasserin aut Mira Morović verfasserin aut Shubha Sathyendranath verfasserin aut Dionysios E. Raitsos verfasserin aut Branka Grbec verfasserin aut Frano Matić verfasserin aut Jere Veža verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 9, p 1460 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:9, p 1460 https://doi.org/10.3390/rs10091460 kostenfrei https://doaj.org/article/81a8e618d0574eab975382400880e94f kostenfrei http://www.mdpi.com/2072-4292/10/9/1460 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 9, p 1460 |
spelling |
10.3390/rs10091460 doi (DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f DE-627 ger DE-627 rakwb eng Žarko Kovač verfasserin aut A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q Trevor Platt verfasserin aut Živana Ninčević Gladan verfasserin aut Mira Morović verfasserin aut Shubha Sathyendranath verfasserin aut Dionysios E. Raitsos verfasserin aut Branka Grbec verfasserin aut Frano Matić verfasserin aut Jere Veža verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 9, p 1460 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:9, p 1460 https://doi.org/10.3390/rs10091460 kostenfrei https://doaj.org/article/81a8e618d0574eab975382400880e94f kostenfrei http://www.mdpi.com/2072-4292/10/9/1460 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 9, p 1460 |
allfields_unstemmed |
10.3390/rs10091460 doi (DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f DE-627 ger DE-627 rakwb eng Žarko Kovač verfasserin aut A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q Trevor Platt verfasserin aut Živana Ninčević Gladan verfasserin aut Mira Morović verfasserin aut Shubha Sathyendranath verfasserin aut Dionysios E. Raitsos verfasserin aut Branka Grbec verfasserin aut Frano Matić verfasserin aut Jere Veža verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 9, p 1460 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:9, p 1460 https://doi.org/10.3390/rs10091460 kostenfrei https://doaj.org/article/81a8e618d0574eab975382400880e94f kostenfrei http://www.mdpi.com/2072-4292/10/9/1460 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 9, p 1460 |
allfieldsGer |
10.3390/rs10091460 doi (DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f DE-627 ger DE-627 rakwb eng Žarko Kovač verfasserin aut A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q Trevor Platt verfasserin aut Živana Ninčević Gladan verfasserin aut Mira Morović verfasserin aut Shubha Sathyendranath verfasserin aut Dionysios E. Raitsos verfasserin aut Branka Grbec verfasserin aut Frano Matić verfasserin aut Jere Veža verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 9, p 1460 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:9, p 1460 https://doi.org/10.3390/rs10091460 kostenfrei https://doaj.org/article/81a8e618d0574eab975382400880e94f kostenfrei http://www.mdpi.com/2072-4292/10/9/1460 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 9, p 1460 |
allfieldsSound |
10.3390/rs10091460 doi (DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f DE-627 ger DE-627 rakwb eng Žarko Kovač verfasserin aut A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q Trevor Platt verfasserin aut Živana Ninčević Gladan verfasserin aut Mira Morović verfasserin aut Shubha Sathyendranath verfasserin aut Dionysios E. Raitsos verfasserin aut Branka Grbec verfasserin aut Frano Matić verfasserin aut Jere Veža verfasserin aut In Remote Sensing MDPI AG, 2009 10(2018), 9, p 1460 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:10 year:2018 number:9, p 1460 https://doi.org/10.3390/rs10091460 kostenfrei https://doaj.org/article/81a8e618d0574eab975382400880e94f kostenfrei http://www.mdpi.com/2072-4292/10/9/1460 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2018 9, p 1460 |
language |
English |
source |
In Remote Sensing 10(2018), 9, p 1460 volume:10 year:2018 number:9, p 1460 |
sourceStr |
In Remote Sensing 10(2018), 9, p 1460 volume:10 year:2018 number:9, p 1460 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
primary production photosynthesis parameters production model time-series regime shift Adriatic Sea Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Žarko Kovač @@aut@@ Trevor Platt @@aut@@ Živana Ninčević Gladan @@aut@@ Mira Morović @@aut@@ Shubha Sathyendranath @@aut@@ Dionysios E. Raitsos @@aut@@ Branka Grbec @@aut@@ Frano Matić @@aut@@ Jere Veža @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ074406329 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074406329</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309124024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10091460</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074406329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81a8e618d0574eab975382400880e94f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Žarko Kovač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photosynthesis parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">production model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regime shift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adriatic Sea</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trevor Platt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mira Morović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubha Sathyendranath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dionysios E. Raitsos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Branka Grbec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jere Veža</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 9, p 1460</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:9, p 1460</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10091460</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81a8e618d0574eab975382400880e94f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/9/1460</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">9, p 1460</subfield></datafield></record></collection>
|
author |
Žarko Kovač |
spellingShingle |
Žarko Kovač misc primary production misc photosynthesis parameters misc production model misc time-series misc regime shift misc Adriatic Sea misc Science misc Q A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
authorStr |
Žarko Kovač |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts primary production photosynthesis parameters production model time-series regime shift Adriatic Sea |
topic |
misc primary production misc photosynthesis parameters misc production model misc time-series misc regime shift misc Adriatic Sea misc Science misc Q |
topic_unstemmed |
misc primary production misc photosynthesis parameters misc production model misc time-series misc regime shift misc Adriatic Sea misc Science misc Q |
topic_browse |
misc primary production misc photosynthesis parameters misc production model misc time-series misc regime shift misc Adriatic Sea misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
ctrlnum |
(DE-627)DOAJ074406329 (DE-599)DOAJ81a8e618d0574eab975382400880e94f |
title_full |
A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
author_sort |
Žarko Kovač |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Žarko Kovač Trevor Platt Živana Ninčević Gladan Mira Morović Shubha Sathyendranath Dionysios E. Raitsos Branka Grbec Frano Matić Jere Veža |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Žarko Kovač |
doi_str_mv |
10.3390/rs10091460 |
author2-role |
verfasserin |
title_sort |
55-year time series station for primary production in the adriatic sea: data correction, extraction of photosynthesis parameters and regime shifts |
title_auth |
A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
abstract |
In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. |
abstractGer |
In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. |
abstract_unstemmed |
In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
9, p 1460 |
title_short |
A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts |
url |
https://doi.org/10.3390/rs10091460 https://doaj.org/article/81a8e618d0574eab975382400880e94f http://www.mdpi.com/2072-4292/10/9/1460 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Trevor Platt Živana Ninčević Gladan Mira Morović Shubha Sathyendranath Dionysios E. Raitsos Branka Grbec Frano Matić Jere Veža |
author2Str |
Trevor Platt Živana Ninčević Gladan Mira Morović Shubha Sathyendranath Dionysios E. Raitsos Branka Grbec Frano Matić Jere Veža |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs10091460 |
up_date |
2024-07-03T22:57:27.131Z |
_version_ |
1803600471923884032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074406329</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309124024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs10091460</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074406329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ81a8e618d0574eab975382400880e94f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Žarko Kovač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A 55-Year Time Series Station for Primary Production in the Adriatic Sea: Data Correction, Extraction of Photosynthesis Parameters and Regime Shifts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1962, a series of in situ primary production measurements began in the Adriatic Sea, at a station near the island of Vis. To this day, over 55 years of monthly measurements through the photic zone have been accumulated, including close to 3000 production measurements at different depths. The measurements are conducted over a six-hour period around noon, and the average production rate extrapolated linearly over day length to calculate daily production. Here, a non-linear primary production model is used to correct these estimates for potential overestimation of daily production due to linear extrapolation. The assimilation numbers are recovered from the measured production profiles and subsequently used to model production at depth. Using the recovered parameters, the model explained 87% of variability in measured normalized production at depth. The model is then used to calculate daily production at depth, and it is observed to give on average 20% lower daily production at depth than the estimates based on linear extrapolation. Subsequently, water column production is calculated, and here, the model predicted on average 26% lower water column production. With the recovered parameters and the known magnitude of the overestimation, the time-series of water column production is then re-established with the non-linearly-corrected data. During this 55-year period, distinct regimes were observed, which were classified with a regime shift detection method. It is then demonstrated how the recovered parameters can be used in a remote sensing application. A seasonal cycle of the recovered assimilation number is constructed along with the seasonal cycle of remotely-sensed chlorophyll. The two are then used to model the seasonal cycle of water column production. An upper and a lower bound on the seasonal cycle of water column production based on remotely-sensed chlorophyll data are then presented. Measured water column production was found to be well within the range of remotely-sensed estimates. With this work, the utility of in situ measurements as a means of providing information on the assimilation number is presented and its application as a reference for remote sensing models highlighted.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primary production</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photosynthesis parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">production model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regime shift</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adriatic Sea</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trevor Platt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mira Morović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubha Sathyendranath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dionysios E. Raitsos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Branka Grbec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jere Veža</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 9, p 1460</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:9, p 1460</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs10091460</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/81a8e618d0574eab975382400880e94f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2072-4292/10/9/1460</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">9, p 1460</subfield></datafield></record></collection>
|
score |
7.402011 |