Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings
Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the...
Ausführliche Beschreibung
Autor*in: |
Gianvincenzo Sparacia [verfasserIn] Giuseppe Parla [verfasserIn] Giuseppe Mamone [verfasserIn] Mariangela Caruso [verfasserIn] Fabio Torregrossa [verfasserIn] Giovanni Grasso [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Brain Sciences - MDPI AG, 2012, 11(2021), 12, p 1613 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:12, p 1613 |
Links: |
---|
DOI / URN: |
10.3390/brainsci11121613 |
---|
Katalog-ID: |
DOAJ074409107 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ074409107 | ||
003 | DE-627 | ||
005 | 20240412095413.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/brainsci11121613 |2 doi | |
035 | |a (DE-627)DOAJ074409107 | ||
035 | |a (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Gianvincenzo Sparacia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. | ||
650 | 4 | |a brain mapping | |
650 | 4 | |a brain tumors | |
650 | 4 | |a functional connectivity | |
650 | 4 | |a resting-state fMRI | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Giuseppe Parla |e verfasserin |4 aut | |
700 | 0 | |a Giuseppe Mamone |e verfasserin |4 aut | |
700 | 0 | |a Mariangela Caruso |e verfasserin |4 aut | |
700 | 0 | |a Fabio Torregrossa |e verfasserin |4 aut | |
700 | 0 | |a Giovanni Grasso |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Brain Sciences |d MDPI AG, 2012 |g 11(2021), 12, p 1613 |w (DE-627)687718139 |w (DE-600)2651993-8 |x 20763425 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:12, p 1613 |
856 | 4 | 0 | |u https://doi.org/10.3390/brainsci11121613 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3425/11/12/1613 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 12, p 1613 |
author_variant |
g s gs g p gp g m gm m c mc f t ft g g gg |
---|---|
matchkey_str |
article:20763425:2021----::etnsaeucinlantceoaciaigosrianuonooylnigoada |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.3390/brainsci11121613 doi (DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad DE-627 ger DE-627 rakwb eng RC321-571 Gianvincenzo Sparacia verfasserin aut Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Giuseppe Parla verfasserin aut Giuseppe Mamone verfasserin aut Mariangela Caruso verfasserin aut Fabio Torregrossa verfasserin aut Giovanni Grasso verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 12, p 1613 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:12, p 1613 https://doi.org/10.3390/brainsci11121613 kostenfrei https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad kostenfrei https://www.mdpi.com/2076-3425/11/12/1613 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 1613 |
spelling |
10.3390/brainsci11121613 doi (DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad DE-627 ger DE-627 rakwb eng RC321-571 Gianvincenzo Sparacia verfasserin aut Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Giuseppe Parla verfasserin aut Giuseppe Mamone verfasserin aut Mariangela Caruso verfasserin aut Fabio Torregrossa verfasserin aut Giovanni Grasso verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 12, p 1613 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:12, p 1613 https://doi.org/10.3390/brainsci11121613 kostenfrei https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad kostenfrei https://www.mdpi.com/2076-3425/11/12/1613 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 1613 |
allfields_unstemmed |
10.3390/brainsci11121613 doi (DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad DE-627 ger DE-627 rakwb eng RC321-571 Gianvincenzo Sparacia verfasserin aut Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Giuseppe Parla verfasserin aut Giuseppe Mamone verfasserin aut Mariangela Caruso verfasserin aut Fabio Torregrossa verfasserin aut Giovanni Grasso verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 12, p 1613 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:12, p 1613 https://doi.org/10.3390/brainsci11121613 kostenfrei https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad kostenfrei https://www.mdpi.com/2076-3425/11/12/1613 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 1613 |
allfieldsGer |
10.3390/brainsci11121613 doi (DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad DE-627 ger DE-627 rakwb eng RC321-571 Gianvincenzo Sparacia verfasserin aut Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Giuseppe Parla verfasserin aut Giuseppe Mamone verfasserin aut Mariangela Caruso verfasserin aut Fabio Torregrossa verfasserin aut Giovanni Grasso verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 12, p 1613 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:12, p 1613 https://doi.org/10.3390/brainsci11121613 kostenfrei https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad kostenfrei https://www.mdpi.com/2076-3425/11/12/1613 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 1613 |
allfieldsSound |
10.3390/brainsci11121613 doi (DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad DE-627 ger DE-627 rakwb eng RC321-571 Gianvincenzo Sparacia verfasserin aut Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry Giuseppe Parla verfasserin aut Giuseppe Mamone verfasserin aut Mariangela Caruso verfasserin aut Fabio Torregrossa verfasserin aut Giovanni Grasso verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 12, p 1613 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:12, p 1613 https://doi.org/10.3390/brainsci11121613 kostenfrei https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad kostenfrei https://www.mdpi.com/2076-3425/11/12/1613 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 12, p 1613 |
language |
English |
source |
In Brain Sciences 11(2021), 12, p 1613 volume:11 year:2021 number:12, p 1613 |
sourceStr |
In Brain Sciences 11(2021), 12, p 1613 volume:11 year:2021 number:12, p 1613 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
brain mapping brain tumors functional connectivity resting-state fMRI Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
Brain Sciences |
authorswithroles_txt_mv |
Gianvincenzo Sparacia @@aut@@ Giuseppe Parla @@aut@@ Giuseppe Mamone @@aut@@ Mariangela Caruso @@aut@@ Fabio Torregrossa @@aut@@ Giovanni Grasso @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
687718139 |
id |
DOAJ074409107 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074409107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412095413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/brainsci11121613</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074409107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gianvincenzo Sparacia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain tumors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resting-state fMRI</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Parla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Mamone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariangela Caruso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabio Torregrossa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Grasso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Brain Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 12, p 1613</subfield><subfield code="w">(DE-627)687718139</subfield><subfield code="w">(DE-600)2651993-8</subfield><subfield code="x">20763425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 1613</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/brainsci11121613</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3425/11/12/1613</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 1613</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Gianvincenzo Sparacia |
spellingShingle |
Gianvincenzo Sparacia misc RC321-571 misc brain mapping misc brain tumors misc functional connectivity misc resting-state fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
authorStr |
Gianvincenzo Sparacia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)687718139 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
20763425 |
topic_title |
RC321-571 Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings brain mapping brain tumors functional connectivity resting-state fMRI |
topic |
misc RC321-571 misc brain mapping misc brain tumors misc functional connectivity misc resting-state fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc brain mapping misc brain tumors misc functional connectivity misc resting-state fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc brain mapping misc brain tumors misc functional connectivity misc resting-state fMRI misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Brain Sciences |
hierarchy_parent_id |
687718139 |
hierarchy_top_title |
Brain Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)687718139 (DE-600)2651993-8 |
title |
Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
ctrlnum |
(DE-627)DOAJ074409107 (DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad |
title_full |
Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
author_sort |
Gianvincenzo Sparacia |
journal |
Brain Sciences |
journalStr |
Brain Sciences |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Gianvincenzo Sparacia Giuseppe Parla Giuseppe Mamone Mariangela Caruso Fabio Torregrossa Giovanni Grasso |
container_volume |
11 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Gianvincenzo Sparacia |
doi_str_mv |
10.3390/brainsci11121613 |
author2-role |
verfasserin |
title_sort |
resting-state functional magnetic resonance imaging for surgical neuro-oncology planning: towards a standardization in clinical settings |
callnumber |
RC321-571 |
title_auth |
Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
abstract |
Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. |
abstractGer |
Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. |
abstract_unstemmed |
Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 1613 |
title_short |
Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings |
url |
https://doi.org/10.3390/brainsci11121613 https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad https://www.mdpi.com/2076-3425/11/12/1613 https://doaj.org/toc/2076-3425 |
remote_bool |
true |
author2 |
Giuseppe Parla Giuseppe Mamone Mariangela Caruso Fabio Torregrossa Giovanni Grasso |
author2Str |
Giuseppe Parla Giuseppe Mamone Mariangela Caruso Fabio Torregrossa Giovanni Grasso |
ppnlink |
687718139 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/brainsci11121613 |
callnumber-a |
RC321-571 |
up_date |
2024-07-03T22:58:21.414Z |
_version_ |
1803600528845832192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ074409107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412095413.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/brainsci11121613</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ074409107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3c6122a40b6f4b12b6afad49f42f95ad</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gianvincenzo Sparacia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resting-State Functional Magnetic Resonance Imaging for Surgical Neuro-Oncology Planning: Towards a Standardization in Clinical Settings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Resting-state functional magnetic resonance imaging (rest-f-MRI) is a neuroimaging technique that has demonstrated its potential in providing new insights into brain physiology. rest-f-MRI can provide useful information in pre-surgical mapping aimed to balancing long-term survival by maximizing the extent of resection of brain neoplasms, while preserving the patient’s functional connectivity. Rest-fMRI may replace or can be complementary to task-driven fMRI (t-fMRI), particularly in patients unable to cooperate with the task paradigm, such as children or sedated, paretic, aphasic patients. Although rest-fMRI is still under standardization, this technique has been demonstrated to be feasible and valuable in the routine clinical setting for neurosurgical planning, along with intraoperative electrocortical mapping. In the literature, there is growing evidence that rest-fMRI can provide valuable information for the depiction of glioma-related functional brain network impairment. Accordingly, rest-fMRI could allow a tailored glioma surgery improving the surgeon’s ability to increase the extent of resection (EOR), and simultaneously minimize the risk of damage of eloquent brain structures and neuronal networks responsible for the integrity of executive functions. In this article, we present a review of the literature and illustrate the feasibility of rest-fMRI in the clinical setting for presurgical mapping of eloquent networks in patients affected by brain tumors, before and after tumor resection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brain tumors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functional connectivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resting-state fMRI</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Parla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Mamone</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mariangela Caruso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabio Torregrossa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giovanni Grasso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Brain Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 12, p 1613</subfield><subfield code="w">(DE-627)687718139</subfield><subfield code="w">(DE-600)2651993-8</subfield><subfield code="x">20763425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12, p 1613</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/brainsci11121613</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3c6122a40b6f4b12b6afad49f42f95ad</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3425/11/12/1613</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">12, p 1613</subfield></datafield></record></collection>
|
score |
7.400523 |