A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers
Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the impleme...
Ausführliche Beschreibung
Autor*in: |
Abel Arredondo-Galeana [verfasserIn] Aristides Kiprakis [verfasserIn] Ignazio Maria Viola [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 10(2022), 1, p 77 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:1, p 77 |
Links: |
---|
DOI / URN: |
10.3390/jmse10010077 |
---|
Katalog-ID: |
DOAJ075031493 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075031493 | ||
003 | DE-627 | ||
005 | 20240414212304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse10010077 |2 doi | |
035 | |a (DE-627)DOAJ075031493 | ||
035 | |a (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Abel Arredondo-Galeana |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. | ||
650 | 4 | |a magnetoelastic membrane | |
650 | 4 | |a surface morphing | |
650 | 4 | |a flow separation | |
650 | 4 | |a active control | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Aristides Kiprakis |e verfasserin |4 aut | |
700 | 0 | |a Ignazio Maria Viola |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 10(2022), 1, p 77 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:1, p 77 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse10010077 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/10/1/77 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 1, p 77 |
author_variant |
a a g aag a k ak i m v imv |
---|---|
matchkey_str |
article:20771312:2022----::lwotsiltnmmrnfrnewtrplctost |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
VM |
publishDate |
2022 |
allfields |
10.3390/jmse10010077 doi (DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Abel Arredondo-Galeana verfasserin aut A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography Aristides Kiprakis verfasserin aut Ignazio Maria Viola verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 1, p 77 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:1, p 77 https://doi.org/10.3390/jmse10010077 kostenfrei https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 kostenfrei https://www.mdpi.com/2077-1312/10/1/77 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1, p 77 |
spelling |
10.3390/jmse10010077 doi (DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Abel Arredondo-Galeana verfasserin aut A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography Aristides Kiprakis verfasserin aut Ignazio Maria Viola verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 1, p 77 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:1, p 77 https://doi.org/10.3390/jmse10010077 kostenfrei https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 kostenfrei https://www.mdpi.com/2077-1312/10/1/77 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1, p 77 |
allfields_unstemmed |
10.3390/jmse10010077 doi (DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Abel Arredondo-Galeana verfasserin aut A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography Aristides Kiprakis verfasserin aut Ignazio Maria Viola verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 1, p 77 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:1, p 77 https://doi.org/10.3390/jmse10010077 kostenfrei https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 kostenfrei https://www.mdpi.com/2077-1312/10/1/77 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1, p 77 |
allfieldsGer |
10.3390/jmse10010077 doi (DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Abel Arredondo-Galeana verfasserin aut A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography Aristides Kiprakis verfasserin aut Ignazio Maria Viola verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 1, p 77 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:1, p 77 https://doi.org/10.3390/jmse10010077 kostenfrei https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 kostenfrei https://www.mdpi.com/2077-1312/10/1/77 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1, p 77 |
allfieldsSound |
10.3390/jmse10010077 doi (DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Abel Arredondo-Galeana verfasserin aut A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography Aristides Kiprakis verfasserin aut Ignazio Maria Viola verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 1, p 77 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:1, p 77 https://doi.org/10.3390/jmse10010077 kostenfrei https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 kostenfrei https://www.mdpi.com/2077-1312/10/1/77 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 1, p 77 |
language |
English |
source |
In Journal of Marine Science and Engineering 10(2022), 1, p 77 volume:10 year:2022 number:1, p 77 |
sourceStr |
In Journal of Marine Science and Engineering 10(2022), 1, p 77 volume:10 year:2022 number:1, p 77 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
magnetoelastic membrane surface morphing flow separation active control Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Abel Arredondo-Galeana @@aut@@ Aristides Kiprakis @@aut@@ Ignazio Maria Viola @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ075031493 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075031493</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414212304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10010077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075031493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abel Arredondo-Galeana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelastic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface morphing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristides Kiprakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignazio Maria Viola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 1, p 77</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 77</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10010077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/1/77</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 77</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Abel Arredondo-Galeana |
spellingShingle |
Abel Arredondo-Galeana misc VM1-989 misc GC1-1581 misc magnetoelastic membrane misc surface morphing misc flow separation misc active control misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
authorStr |
Abel Arredondo-Galeana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers magnetoelastic membrane surface morphing flow separation active control |
topic |
misc VM1-989 misc GC1-1581 misc magnetoelastic membrane misc surface morphing misc flow separation misc active control misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc magnetoelastic membrane misc surface morphing misc flow separation misc active control misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc magnetoelastic membrane misc surface morphing misc flow separation misc active control misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
ctrlnum |
(DE-627)DOAJ075031493 (DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2 |
title_full |
A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
author_sort |
Abel Arredondo-Galeana |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Abel Arredondo-Galeana Aristides Kiprakis Ignazio Maria Viola |
container_volume |
10 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Abel Arredondo-Galeana |
doi_str_mv |
10.3390/jmse10010077 |
author2-role |
verfasserin |
title_sort |
low cost oscillating membrane for underwater applications at low reynolds numbers |
callnumber |
VM1-989 |
title_auth |
A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
abstract |
Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. |
abstractGer |
Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. |
abstract_unstemmed |
Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 77 |
title_short |
A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers |
url |
https://doi.org/10.3390/jmse10010077 https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2 https://www.mdpi.com/2077-1312/10/1/77 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Aristides Kiprakis Ignazio Maria Viola |
author2Str |
Aristides Kiprakis Ignazio Maria Viola |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse10010077 |
callnumber-a |
VM1-989 |
up_date |
2024-07-04T01:34:42.710Z |
_version_ |
1803610365845569537 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075031493</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414212304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10010077</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075031493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ66f5b5b0c3f549d098f44865986110b2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abel Arredondo-Galeana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Low Cost Oscillating Membrane for Underwater Applications at Low Reynolds Numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Active surface morphing is a nonintrusive flow control technique that can delay separation in laminar and turbulent boundary layers. Most of the experimental studies of such control strategy have been carried out in wind tunnels at low Reynolds numbers with costly actuators. In contrast, the implementation of such a control strategy at low cost for an underwater environment remains vastly unexplored. This paper explores active surface morphing at low cost and at low Reynolds for underwater applications. We do this with a 3D printed foil submerged in a water tunnel. The suction surface of the foil is covered with a magnetoelastic membrane. The membrane is actuated via two electromagnets that are positioned inside of the foil. Three actuation frequencies (slow, intermediate, fast) are tested and the deformation of the membrane is measured with an optosensor. We show that lift increases by 1%, whilst drag decreases by 6% at a Strouhal number of 0.3, i.e., at the fast actuation case. We demonstrate that surface actuation is applicable to the marine environment through an off the shelf approach, and that this method is more economical than existing active surface morphing technologies. Since the actuation mechanism is not energy intensive, it is envisioned that it could be applied to marine energy devices, boat appendages, and autonomous underwater vehicles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelastic membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface morphing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">active control</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aristides Kiprakis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ignazio Maria Viola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 1, p 77</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 77</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10010077</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/66f5b5b0c3f549d098f44865986110b2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/1/77</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 77</subfield></datafield></record></collection>
|
score |
7.399987 |