Exploration of uncharted regions of the protein universe.
The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such fami...
Ausführliche Beschreibung
Autor*in: |
Lukasz Jaroszewski [verfasserIn] Zhanwen Li [verfasserIn] S Sri Krishna [verfasserIn] Constantina Bakolitsa [verfasserIn] John Wooley [verfasserIn] Ashley M Deacon [verfasserIn] Ian A Wilson [verfasserIn] Adam Godzik [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Übergeordnetes Werk: |
In: PLoS Biology - Public Library of Science (PLoS), 2003, 7(2009), 9, p e1000205 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2009 ; number:9, p e1000205 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1371/journal.pbio.1000205 |
---|
Katalog-ID: |
DOAJ075156040 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075156040 | ||
003 | DE-627 | ||
005 | 20230503011403.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pbio.1000205 |2 doi | |
035 | |a (DE-627)DOAJ075156040 | ||
035 | |a (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Lukasz Jaroszewski |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploration of uncharted regions of the protein universe. |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. | ||
653 | 0 | |a Biology (General) | |
700 | 0 | |a Zhanwen Li |e verfasserin |4 aut | |
700 | 0 | |a S Sri Krishna |e verfasserin |4 aut | |
700 | 0 | |a Constantina Bakolitsa |e verfasserin |4 aut | |
700 | 0 | |a John Wooley |e verfasserin |4 aut | |
700 | 0 | |a Ashley M Deacon |e verfasserin |4 aut | |
700 | 0 | |a Ian A Wilson |e verfasserin |4 aut | |
700 | 0 | |a Adam Godzik |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS Biology |d Public Library of Science (PLoS), 2003 |g 7(2009), 9, p e1000205 |w (DE-627)373755597 |w (DE-600)2126773-X |x 15457885 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2009 |g number:9, p e1000205 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pbio.1000205 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 |z kostenfrei |
856 | 4 | 0 | |u https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1544-9173 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1545-7885 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2009 |e 9, p e1000205 |
author_variant |
l j lj z l zl s s k ssk c b cb j w jw a m d amd i a w iaw a g ag |
---|---|
matchkey_str |
article:15457885:2009----::xlrtooucatdeinoter |
hierarchy_sort_str |
2009 |
callnumber-subject-code |
QH |
publishDate |
2009 |
allfields |
10.1371/journal.pbio.1000205 doi (DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 DE-627 ger DE-627 rakwb eng QH301-705.5 Lukasz Jaroszewski verfasserin aut Exploration of uncharted regions of the protein universe. 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. Biology (General) Zhanwen Li verfasserin aut S Sri Krishna verfasserin aut Constantina Bakolitsa verfasserin aut John Wooley verfasserin aut Ashley M Deacon verfasserin aut Ian A Wilson verfasserin aut Adam Godzik verfasserin aut In PLoS Biology Public Library of Science (PLoS), 2003 7(2009), 9, p e1000205 (DE-627)373755597 (DE-600)2126773-X 15457885 nnns volume:7 year:2009 number:9, p e1000205 https://doi.org/10.1371/journal.pbio.1000205 kostenfrei https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI kostenfrei https://doaj.org/toc/1544-9173 Journal toc kostenfrei https://doaj.org/toc/1545-7885 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2009 9, p e1000205 |
spelling |
10.1371/journal.pbio.1000205 doi (DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 DE-627 ger DE-627 rakwb eng QH301-705.5 Lukasz Jaroszewski verfasserin aut Exploration of uncharted regions of the protein universe. 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. Biology (General) Zhanwen Li verfasserin aut S Sri Krishna verfasserin aut Constantina Bakolitsa verfasserin aut John Wooley verfasserin aut Ashley M Deacon verfasserin aut Ian A Wilson verfasserin aut Adam Godzik verfasserin aut In PLoS Biology Public Library of Science (PLoS), 2003 7(2009), 9, p e1000205 (DE-627)373755597 (DE-600)2126773-X 15457885 nnns volume:7 year:2009 number:9, p e1000205 https://doi.org/10.1371/journal.pbio.1000205 kostenfrei https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI kostenfrei https://doaj.org/toc/1544-9173 Journal toc kostenfrei https://doaj.org/toc/1545-7885 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2009 9, p e1000205 |
allfields_unstemmed |
10.1371/journal.pbio.1000205 doi (DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 DE-627 ger DE-627 rakwb eng QH301-705.5 Lukasz Jaroszewski verfasserin aut Exploration of uncharted regions of the protein universe. 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. Biology (General) Zhanwen Li verfasserin aut S Sri Krishna verfasserin aut Constantina Bakolitsa verfasserin aut John Wooley verfasserin aut Ashley M Deacon verfasserin aut Ian A Wilson verfasserin aut Adam Godzik verfasserin aut In PLoS Biology Public Library of Science (PLoS), 2003 7(2009), 9, p e1000205 (DE-627)373755597 (DE-600)2126773-X 15457885 nnns volume:7 year:2009 number:9, p e1000205 https://doi.org/10.1371/journal.pbio.1000205 kostenfrei https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI kostenfrei https://doaj.org/toc/1544-9173 Journal toc kostenfrei https://doaj.org/toc/1545-7885 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2009 9, p e1000205 |
allfieldsGer |
10.1371/journal.pbio.1000205 doi (DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 DE-627 ger DE-627 rakwb eng QH301-705.5 Lukasz Jaroszewski verfasserin aut Exploration of uncharted regions of the protein universe. 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. Biology (General) Zhanwen Li verfasserin aut S Sri Krishna verfasserin aut Constantina Bakolitsa verfasserin aut John Wooley verfasserin aut Ashley M Deacon verfasserin aut Ian A Wilson verfasserin aut Adam Godzik verfasserin aut In PLoS Biology Public Library of Science (PLoS), 2003 7(2009), 9, p e1000205 (DE-627)373755597 (DE-600)2126773-X 15457885 nnns volume:7 year:2009 number:9, p e1000205 https://doi.org/10.1371/journal.pbio.1000205 kostenfrei https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI kostenfrei https://doaj.org/toc/1544-9173 Journal toc kostenfrei https://doaj.org/toc/1545-7885 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2009 9, p e1000205 |
allfieldsSound |
10.1371/journal.pbio.1000205 doi (DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 DE-627 ger DE-627 rakwb eng QH301-705.5 Lukasz Jaroszewski verfasserin aut Exploration of uncharted regions of the protein universe. 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. Biology (General) Zhanwen Li verfasserin aut S Sri Krishna verfasserin aut Constantina Bakolitsa verfasserin aut John Wooley verfasserin aut Ashley M Deacon verfasserin aut Ian A Wilson verfasserin aut Adam Godzik verfasserin aut In PLoS Biology Public Library of Science (PLoS), 2003 7(2009), 9, p e1000205 (DE-627)373755597 (DE-600)2126773-X 15457885 nnns volume:7 year:2009 number:9, p e1000205 https://doi.org/10.1371/journal.pbio.1000205 kostenfrei https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 kostenfrei https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI kostenfrei https://doaj.org/toc/1544-9173 Journal toc kostenfrei https://doaj.org/toc/1545-7885 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2009 9, p e1000205 |
language |
English |
source |
In PLoS Biology 7(2009), 9, p e1000205 volume:7 year:2009 number:9, p e1000205 |
sourceStr |
In PLoS Biology 7(2009), 9, p e1000205 volume:7 year:2009 number:9, p e1000205 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biology (General) |
isfreeaccess_bool |
true |
container_title |
PLoS Biology |
authorswithroles_txt_mv |
Lukasz Jaroszewski @@aut@@ Zhanwen Li @@aut@@ S Sri Krishna @@aut@@ Constantina Bakolitsa @@aut@@ John Wooley @@aut@@ Ashley M Deacon @@aut@@ Ian A Wilson @@aut@@ Adam Godzik @@aut@@ |
publishDateDaySort_date |
2009-01-01T00:00:00Z |
hierarchy_top_id |
373755597 |
id |
DOAJ075156040 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075156040</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503011403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pbio.1000205</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075156040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lukasz Jaroszewski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploration of uncharted regions of the protein universe.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S Sri Krishna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Constantina Bakolitsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Wooley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley M Deacon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian A Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adam Godzik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS Biology</subfield><subfield code="d">Public Library of Science (PLoS), 2003</subfield><subfield code="g">7(2009), 9, p e1000205</subfield><subfield code="w">(DE-627)373755597</subfield><subfield code="w">(DE-600)2126773-X</subfield><subfield code="x">15457885</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:9, p e1000205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pbio.1000205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1544-9173</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1545-7885</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2009</subfield><subfield code="e">9, p e1000205</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Lukasz Jaroszewski |
spellingShingle |
Lukasz Jaroszewski misc QH301-705.5 misc Biology (General) Exploration of uncharted regions of the protein universe. |
authorStr |
Lukasz Jaroszewski |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)373755597 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
15457885 |
topic_title |
QH301-705.5 Exploration of uncharted regions of the protein universe |
topic |
misc QH301-705.5 misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc Biology (General) |
topic_browse |
misc QH301-705.5 misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS Biology |
hierarchy_parent_id |
373755597 |
hierarchy_top_title |
PLoS Biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)373755597 (DE-600)2126773-X |
title |
Exploration of uncharted regions of the protein universe. |
ctrlnum |
(DE-627)DOAJ075156040 (DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7 |
title_full |
Exploration of uncharted regions of the protein universe |
author_sort |
Lukasz Jaroszewski |
journal |
PLoS Biology |
journalStr |
PLoS Biology |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
author_browse |
Lukasz Jaroszewski Zhanwen Li S Sri Krishna Constantina Bakolitsa John Wooley Ashley M Deacon Ian A Wilson Adam Godzik |
container_volume |
7 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Lukasz Jaroszewski |
doi_str_mv |
10.1371/journal.pbio.1000205 |
author2-role |
verfasserin |
title_sort |
exploration of uncharted regions of the protein universe |
callnumber |
QH301-705.5 |
title_auth |
Exploration of uncharted regions of the protein universe. |
abstract |
The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. |
abstractGer |
The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. |
abstract_unstemmed |
The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p e1000205 |
title_short |
Exploration of uncharted regions of the protein universe. |
url |
https://doi.org/10.1371/journal.pbio.1000205 https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7 https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI https://doaj.org/toc/1544-9173 https://doaj.org/toc/1545-7885 |
remote_bool |
true |
author2 |
Zhanwen Li S Sri Krishna Constantina Bakolitsa John Wooley Ashley M Deacon Ian A Wilson Adam Godzik |
author2Str |
Zhanwen Li S Sri Krishna Constantina Bakolitsa John Wooley Ashley M Deacon Ian A Wilson Adam Godzik |
ppnlink |
373755597 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pbio.1000205 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T13:17:06.555Z |
_version_ |
1803563959907778560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075156040</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503011403.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pbio.1000205</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075156040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa505829aab6b4814b2aa0c900f886bf7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lukasz Jaroszewski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploration of uncharted regions of the protein universe.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanwen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S Sri Krishna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Constantina Bakolitsa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Wooley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ashley M Deacon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian A Wilson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adam Godzik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS Biology</subfield><subfield code="d">Public Library of Science (PLoS), 2003</subfield><subfield code="g">7(2009), 9, p e1000205</subfield><subfield code="w">(DE-627)373755597</subfield><subfield code="w">(DE-600)2126773-X</subfield><subfield code="x">15457885</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:9, p e1000205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pbio.1000205</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a505829aab6b4814b2aa0c900f886bf7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19787035/?tool=EBI</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1544-9173</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1545-7885</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2009</subfield><subfield code="e">9, p e1000205</subfield></datafield></record></collection>
|
score |
7.4011087 |