Tuberculosis outbreak investigation using phylodynamic analysis
The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Myco...
Ausführliche Beschreibung
Autor*in: |
Denise Kühnert [verfasserIn] Mireia Coscolla [verfasserIn] Daniela Brites [verfasserIn] David Stucki [verfasserIn] John Metcalfe [verfasserIn] Lukas Fenner [verfasserIn] Sebastien Gagneux [verfasserIn] Tanja Stadler [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Übergeordnetes Werk: |
In: Epidemics - Elsevier, 2015, 25(2018), Seite 47-53 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2018 ; pages:47-53 |
Links: |
---|
DOI / URN: |
10.1016/j.epidem.2018.05.004 |
---|
Katalog-ID: |
DOAJ075243490 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075243490 | ||
003 | DE-627 | ||
005 | 20230502070205.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.epidem.2018.05.004 |2 doi | |
035 | |a (DE-627)DOAJ075243490 | ||
035 | |a (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC109-216 | |
100 | 0 | |a Denise Kühnert |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tuberculosis outbreak investigation using phylodynamic analysis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics | ||
653 | 0 | |a Infectious and parasitic diseases | |
700 | 0 | |a Mireia Coscolla |e verfasserin |4 aut | |
700 | 0 | |a Daniela Brites |e verfasserin |4 aut | |
700 | 0 | |a David Stucki |e verfasserin |4 aut | |
700 | 0 | |a John Metcalfe |e verfasserin |4 aut | |
700 | 0 | |a Lukas Fenner |e verfasserin |4 aut | |
700 | 0 | |a Sebastien Gagneux |e verfasserin |4 aut | |
700 | 0 | |a Tanja Stadler |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Epidemics |d Elsevier, 2015 |g 25(2018), Seite 47-53 |w (DE-627)587142170 |w (DE-600)2467993-8 |x 18780067 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2018 |g pages:47-53 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.epidem.2018.05.004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1755436517301068 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1755-4365 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2018 |h 47-53 |
author_variant |
d k dk m c mc d b db d s ds j m jm l f lf s g sg t s ts |
---|---|
matchkey_str |
article:18780067:2018----::ueclssubeknetgtouighl |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
RC |
publishDate |
2018 |
allfields |
10.1016/j.epidem.2018.05.004 doi (DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 DE-627 ger DE-627 rakwb eng RC109-216 Denise Kühnert verfasserin aut Tuberculosis outbreak investigation using phylodynamic analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics Infectious and parasitic diseases Mireia Coscolla verfasserin aut Daniela Brites verfasserin aut David Stucki verfasserin aut John Metcalfe verfasserin aut Lukas Fenner verfasserin aut Sebastien Gagneux verfasserin aut Tanja Stadler verfasserin aut In Epidemics Elsevier, 2015 25(2018), Seite 47-53 (DE-627)587142170 (DE-600)2467993-8 18780067 nnns volume:25 year:2018 pages:47-53 https://doi.org/10.1016/j.epidem.2018.05.004 kostenfrei https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 kostenfrei http://www.sciencedirect.com/science/article/pii/S1755436517301068 kostenfrei https://doaj.org/toc/1755-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2018 47-53 |
spelling |
10.1016/j.epidem.2018.05.004 doi (DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 DE-627 ger DE-627 rakwb eng RC109-216 Denise Kühnert verfasserin aut Tuberculosis outbreak investigation using phylodynamic analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics Infectious and parasitic diseases Mireia Coscolla verfasserin aut Daniela Brites verfasserin aut David Stucki verfasserin aut John Metcalfe verfasserin aut Lukas Fenner verfasserin aut Sebastien Gagneux verfasserin aut Tanja Stadler verfasserin aut In Epidemics Elsevier, 2015 25(2018), Seite 47-53 (DE-627)587142170 (DE-600)2467993-8 18780067 nnns volume:25 year:2018 pages:47-53 https://doi.org/10.1016/j.epidem.2018.05.004 kostenfrei https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 kostenfrei http://www.sciencedirect.com/science/article/pii/S1755436517301068 kostenfrei https://doaj.org/toc/1755-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2018 47-53 |
allfields_unstemmed |
10.1016/j.epidem.2018.05.004 doi (DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 DE-627 ger DE-627 rakwb eng RC109-216 Denise Kühnert verfasserin aut Tuberculosis outbreak investigation using phylodynamic analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics Infectious and parasitic diseases Mireia Coscolla verfasserin aut Daniela Brites verfasserin aut David Stucki verfasserin aut John Metcalfe verfasserin aut Lukas Fenner verfasserin aut Sebastien Gagneux verfasserin aut Tanja Stadler verfasserin aut In Epidemics Elsevier, 2015 25(2018), Seite 47-53 (DE-627)587142170 (DE-600)2467993-8 18780067 nnns volume:25 year:2018 pages:47-53 https://doi.org/10.1016/j.epidem.2018.05.004 kostenfrei https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 kostenfrei http://www.sciencedirect.com/science/article/pii/S1755436517301068 kostenfrei https://doaj.org/toc/1755-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2018 47-53 |
allfieldsGer |
10.1016/j.epidem.2018.05.004 doi (DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 DE-627 ger DE-627 rakwb eng RC109-216 Denise Kühnert verfasserin aut Tuberculosis outbreak investigation using phylodynamic analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics Infectious and parasitic diseases Mireia Coscolla verfasserin aut Daniela Brites verfasserin aut David Stucki verfasserin aut John Metcalfe verfasserin aut Lukas Fenner verfasserin aut Sebastien Gagneux verfasserin aut Tanja Stadler verfasserin aut In Epidemics Elsevier, 2015 25(2018), Seite 47-53 (DE-627)587142170 (DE-600)2467993-8 18780067 nnns volume:25 year:2018 pages:47-53 https://doi.org/10.1016/j.epidem.2018.05.004 kostenfrei https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 kostenfrei http://www.sciencedirect.com/science/article/pii/S1755436517301068 kostenfrei https://doaj.org/toc/1755-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2018 47-53 |
allfieldsSound |
10.1016/j.epidem.2018.05.004 doi (DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 DE-627 ger DE-627 rakwb eng RC109-216 Denise Kühnert verfasserin aut Tuberculosis outbreak investigation using phylodynamic analysis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics Infectious and parasitic diseases Mireia Coscolla verfasserin aut Daniela Brites verfasserin aut David Stucki verfasserin aut John Metcalfe verfasserin aut Lukas Fenner verfasserin aut Sebastien Gagneux verfasserin aut Tanja Stadler verfasserin aut In Epidemics Elsevier, 2015 25(2018), Seite 47-53 (DE-627)587142170 (DE-600)2467993-8 18780067 nnns volume:25 year:2018 pages:47-53 https://doi.org/10.1016/j.epidem.2018.05.004 kostenfrei https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 kostenfrei http://www.sciencedirect.com/science/article/pii/S1755436517301068 kostenfrei https://doaj.org/toc/1755-4365 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2018 47-53 |
language |
English |
source |
In Epidemics 25(2018), Seite 47-53 volume:25 year:2018 pages:47-53 |
sourceStr |
In Epidemics 25(2018), Seite 47-53 volume:25 year:2018 pages:47-53 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Infectious and parasitic diseases |
isfreeaccess_bool |
true |
container_title |
Epidemics |
authorswithroles_txt_mv |
Denise Kühnert @@aut@@ Mireia Coscolla @@aut@@ Daniela Brites @@aut@@ David Stucki @@aut@@ John Metcalfe @@aut@@ Lukas Fenner @@aut@@ Sebastien Gagneux @@aut@@ Tanja Stadler @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
587142170 |
id |
DOAJ075243490 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075243490</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502070205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.epidem.2018.05.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075243490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Denise Kühnert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tuberculosis outbreak investigation using phylodynamic analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mireia Coscolla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Brites</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Stucki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Metcalfe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lukas Fenner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastien Gagneux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanja Stadler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Epidemics</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">25(2018), Seite 47-53</subfield><subfield code="w">(DE-627)587142170</subfield><subfield code="w">(DE-600)2467993-8</subfield><subfield code="x">18780067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:47-53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.epidem.2018.05.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1755436517301068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1755-4365</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2018</subfield><subfield code="h">47-53</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Denise Kühnert |
spellingShingle |
Denise Kühnert misc RC109-216 misc Infectious and parasitic diseases Tuberculosis outbreak investigation using phylodynamic analysis |
authorStr |
Denise Kühnert |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)587142170 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC109-216 |
illustrated |
Not Illustrated |
issn |
18780067 |
topic_title |
RC109-216 Tuberculosis outbreak investigation using phylodynamic analysis |
topic |
misc RC109-216 misc Infectious and parasitic diseases |
topic_unstemmed |
misc RC109-216 misc Infectious and parasitic diseases |
topic_browse |
misc RC109-216 misc Infectious and parasitic diseases |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Epidemics |
hierarchy_parent_id |
587142170 |
hierarchy_top_title |
Epidemics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)587142170 (DE-600)2467993-8 |
title |
Tuberculosis outbreak investigation using phylodynamic analysis |
ctrlnum |
(DE-627)DOAJ075243490 (DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6 |
title_full |
Tuberculosis outbreak investigation using phylodynamic analysis |
author_sort |
Denise Kühnert |
journal |
Epidemics |
journalStr |
Epidemics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
47 |
author_browse |
Denise Kühnert Mireia Coscolla Daniela Brites David Stucki John Metcalfe Lukas Fenner Sebastien Gagneux Tanja Stadler |
container_volume |
25 |
class |
RC109-216 |
format_se |
Elektronische Aufsätze |
author-letter |
Denise Kühnert |
doi_str_mv |
10.1016/j.epidem.2018.05.004 |
author2-role |
verfasserin |
title_sort |
tuberculosis outbreak investigation using phylodynamic analysis |
callnumber |
RC109-216 |
title_auth |
Tuberculosis outbreak investigation using phylodynamic analysis |
abstract |
The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics |
abstractGer |
The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics |
abstract_unstemmed |
The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Tuberculosis outbreak investigation using phylodynamic analysis |
url |
https://doi.org/10.1016/j.epidem.2018.05.004 https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6 http://www.sciencedirect.com/science/article/pii/S1755436517301068 https://doaj.org/toc/1755-4365 |
remote_bool |
true |
author2 |
Mireia Coscolla Daniela Brites David Stucki John Metcalfe Lukas Fenner Sebastien Gagneux Tanja Stadler |
author2Str |
Mireia Coscolla Daniela Brites David Stucki John Metcalfe Lukas Fenner Sebastien Gagneux Tanja Stadler |
ppnlink |
587142170 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.epidem.2018.05.004 |
callnumber-a |
RC109-216 |
up_date |
2024-07-03T13:48:33.755Z |
_version_ |
1803565938785648640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075243490</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502070205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.epidem.2018.05.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075243490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd3c4e65b960645ea95e74e08bc4537a6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC109-216</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Denise Kühnert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tuberculosis outbreak investigation using phylodynamic analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The fast evolution of pathogenic viruses has allowed for the development of phylodynamic approaches that extract information about the epidemiological characteristics of viral genomes. Thanks to advances in whole genome sequencing, they can be applied to slowly evolving bacterial pathogens like Mycobacterium tuberculosis. In this study, we investigate and compare the epidemiological dynamics underlying two M. tuberculosis outbreaks using phylodynamic methods. Specifically, we (i) test if the outbreak data sets contain enough genetic variation to estimate short-term evolutionary rates and (ii) reconstruct epidemiological parameters such as the effective reproduction number.The first outbreak occurred in the Swiss city of Bern (1987–2012) and was caused by a drug-susceptible strain belonging to the phylogenetic M. tuberculosis Lineage 4. The second outbreak was caused by a multidrug-resistant (MDR) strain of Lineage 2, imported from the Wat Tham Krabok (WTK) refugee camp in Thailand into California.There is little temporal signal in the Bern data set and moderate temporal signal in the WTK data set. Thanks to its high sampling proportion (90%) the Bern outbreak allows robust estimation of epidemiological parameters despite the poor temporal signal. Conversely, there is much uncertainty in the epidemiological estimates concerning the sparsely sampled (9%) WTK outbreak. Our results suggest that both outbreaks peaked around 1990, although they were only recognized as outbreaks in 1993 (Bern) and 2004 (WTK). Furthermore, individuals were infected for a significantly longer period (around 9 years) in the WTK outbreak than in the Bern outbreak (4–5 years).Our work highlights both the limitations and opportunities of phylodynamic analysis of outbreaks involving slowly evolving pathogens: (i) estimation of the evolutionary rate is difficult on outbreak time scales and (ii) a high sampling proportion allows quantification of the age of the outbreak based on the sampling times, and thus allows for robust estimation of epidemiological parameters. Keywords: Phylodynamic analysis, Tuberculosis outbreak, Epidemic dynamics, Transmission dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Infectious and parasitic diseases</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mireia Coscolla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniela Brites</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Stucki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">John Metcalfe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lukas Fenner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastien Gagneux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanja Stadler</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Epidemics</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">25(2018), Seite 47-53</subfield><subfield code="w">(DE-627)587142170</subfield><subfield code="w">(DE-600)2467993-8</subfield><subfield code="x">18780067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2018</subfield><subfield code="g">pages:47-53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.epidem.2018.05.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d3c4e65b960645ea95e74e08bc4537a6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1755436517301068</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1755-4365</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2018</subfield><subfield code="h">47-53</subfield></datafield></record></collection>
|
score |
7.402194 |