A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data
Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop da...
Ausführliche Beschreibung
Autor*in: |
Yi Cai [verfasserIn] Jingcheng Du [verfasserIn] Jing Huang [verfasserIn] Susan S. Ellenberg [verfasserIn] Sean Hennessy [verfasserIn] Cui Tao [verfasserIn] Yong Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Medical Informatics and Decision Making - BMC, 2003, 17(2017), S2, Seite 93-100 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2017 ; number:S2 ; pages:93-100 |
Links: |
---|
DOI / URN: |
10.1186/s12911-017-0472-y |
---|
Katalog-ID: |
DOAJ075409518 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075409518 | ||
003 | DE-627 | ||
005 | 20230309133845.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12911-017-0472-y |2 doi | |
035 | |a (DE-627)DOAJ075409518 | ||
035 | |a (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Yi Cai |e verfasserin |4 aut | |
245 | 1 | 2 | |a A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. | ||
650 | 4 | |a Heterogeneity testing | |
650 | 4 | |a Signal detection | |
650 | 4 | |a Vaccine Adverse Event Reporting System (VAERS) | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Jingcheng Du |e verfasserin |4 aut | |
700 | 0 | |a Jing Huang |e verfasserin |4 aut | |
700 | 0 | |a Susan S. Ellenberg |e verfasserin |4 aut | |
700 | 0 | |a Sean Hennessy |e verfasserin |4 aut | |
700 | 0 | |a Cui Tao |e verfasserin |4 aut | |
700 | 0 | |a Yong Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Medical Informatics and Decision Making |d BMC, 2003 |g 17(2017), S2, Seite 93-100 |w (DE-627)328977306 |w (DE-600)2046490-3 |x 14726947 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2017 |g number:S2 |g pages:93-100 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12911-017-0472-y |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s12911-017-0472-y |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1472-6947 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2017 |e S2 |h 93-100 |
author_variant |
y c yc j d jd j h jh s s e sse s h sh c t ct y c yc |
---|---|
matchkey_str |
article:14726947:2017----::sgadtcinehdotmoavrainfdesefcwtvciede |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
R |
publishDate |
2017 |
allfields |
10.1186/s12911-017-0472-y doi (DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 DE-627 ger DE-627 rakwb eng R858-859.7 Yi Cai verfasserin aut A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics Jingcheng Du verfasserin aut Jing Huang verfasserin aut Susan S. Ellenberg verfasserin aut Sean Hennessy verfasserin aut Cui Tao verfasserin aut Yong Chen verfasserin aut In BMC Medical Informatics and Decision Making BMC, 2003 17(2017), S2, Seite 93-100 (DE-627)328977306 (DE-600)2046490-3 14726947 nnns volume:17 year:2017 number:S2 pages:93-100 https://doi.org/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 kostenfrei http://link.springer.com/article/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/toc/1472-6947 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 S2 93-100 |
spelling |
10.1186/s12911-017-0472-y doi (DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 DE-627 ger DE-627 rakwb eng R858-859.7 Yi Cai verfasserin aut A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics Jingcheng Du verfasserin aut Jing Huang verfasserin aut Susan S. Ellenberg verfasserin aut Sean Hennessy verfasserin aut Cui Tao verfasserin aut Yong Chen verfasserin aut In BMC Medical Informatics and Decision Making BMC, 2003 17(2017), S2, Seite 93-100 (DE-627)328977306 (DE-600)2046490-3 14726947 nnns volume:17 year:2017 number:S2 pages:93-100 https://doi.org/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 kostenfrei http://link.springer.com/article/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/toc/1472-6947 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 S2 93-100 |
allfields_unstemmed |
10.1186/s12911-017-0472-y doi (DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 DE-627 ger DE-627 rakwb eng R858-859.7 Yi Cai verfasserin aut A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics Jingcheng Du verfasserin aut Jing Huang verfasserin aut Susan S. Ellenberg verfasserin aut Sean Hennessy verfasserin aut Cui Tao verfasserin aut Yong Chen verfasserin aut In BMC Medical Informatics and Decision Making BMC, 2003 17(2017), S2, Seite 93-100 (DE-627)328977306 (DE-600)2046490-3 14726947 nnns volume:17 year:2017 number:S2 pages:93-100 https://doi.org/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 kostenfrei http://link.springer.com/article/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/toc/1472-6947 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 S2 93-100 |
allfieldsGer |
10.1186/s12911-017-0472-y doi (DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 DE-627 ger DE-627 rakwb eng R858-859.7 Yi Cai verfasserin aut A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics Jingcheng Du verfasserin aut Jing Huang verfasserin aut Susan S. Ellenberg verfasserin aut Sean Hennessy verfasserin aut Cui Tao verfasserin aut Yong Chen verfasserin aut In BMC Medical Informatics and Decision Making BMC, 2003 17(2017), S2, Seite 93-100 (DE-627)328977306 (DE-600)2046490-3 14726947 nnns volume:17 year:2017 number:S2 pages:93-100 https://doi.org/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 kostenfrei http://link.springer.com/article/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/toc/1472-6947 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 S2 93-100 |
allfieldsSound |
10.1186/s12911-017-0472-y doi (DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 DE-627 ger DE-627 rakwb eng R858-859.7 Yi Cai verfasserin aut A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics Jingcheng Du verfasserin aut Jing Huang verfasserin aut Susan S. Ellenberg verfasserin aut Sean Hennessy verfasserin aut Cui Tao verfasserin aut Yong Chen verfasserin aut In BMC Medical Informatics and Decision Making BMC, 2003 17(2017), S2, Seite 93-100 (DE-627)328977306 (DE-600)2046490-3 14726947 nnns volume:17 year:2017 number:S2 pages:93-100 https://doi.org/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 kostenfrei http://link.springer.com/article/10.1186/s12911-017-0472-y kostenfrei https://doaj.org/toc/1472-6947 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 S2 93-100 |
language |
English |
source |
In BMC Medical Informatics and Decision Making 17(2017), S2, Seite 93-100 volume:17 year:2017 number:S2 pages:93-100 |
sourceStr |
In BMC Medical Informatics and Decision Making 17(2017), S2, Seite 93-100 volume:17 year:2017 number:S2 pages:93-100 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
BMC Medical Informatics and Decision Making |
authorswithroles_txt_mv |
Yi Cai @@aut@@ Jingcheng Du @@aut@@ Jing Huang @@aut@@ Susan S. Ellenberg @@aut@@ Sean Hennessy @@aut@@ Cui Tao @@aut@@ Yong Chen @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
328977306 |
id |
DOAJ075409518 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075409518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309133845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-017-0472-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075409518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneity testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vaccine Adverse Event Reporting System (VAERS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingcheng Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susan S. Ellenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sean Hennessy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cui Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Medical Informatics and Decision Making</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">17(2017), S2, Seite 93-100</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">14726947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:S2</subfield><subfield code="g">pages:93-100</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12911-017-0472-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12911-017-0472-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1472-6947</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="e">S2</subfield><subfield code="h">93-100</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Yi Cai |
spellingShingle |
Yi Cai misc R858-859.7 misc Heterogeneity testing misc Signal detection misc Vaccine Adverse Event Reporting System (VAERS) misc Computer applications to medicine. Medical informatics A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
authorStr |
Yi Cai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328977306 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
14726947 |
topic_title |
R858-859.7 A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data Heterogeneity testing Signal detection Vaccine Adverse Event Reporting System (VAERS) |
topic |
misc R858-859.7 misc Heterogeneity testing misc Signal detection misc Vaccine Adverse Event Reporting System (VAERS) misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc Heterogeneity testing misc Signal detection misc Vaccine Adverse Event Reporting System (VAERS) misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc Heterogeneity testing misc Signal detection misc Vaccine Adverse Event Reporting System (VAERS) misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Medical Informatics and Decision Making |
hierarchy_parent_id |
328977306 |
hierarchy_top_title |
BMC Medical Informatics and Decision Making |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328977306 (DE-600)2046490-3 |
title |
A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
ctrlnum |
(DE-627)DOAJ075409518 (DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1 |
title_full |
A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
author_sort |
Yi Cai |
journal |
BMC Medical Informatics and Decision Making |
journalStr |
BMC Medical Informatics and Decision Making |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
93 |
author_browse |
Yi Cai Jingcheng Du Jing Huang Susan S. Ellenberg Sean Hennessy Cui Tao Yong Chen |
container_volume |
17 |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi Cai |
doi_str_mv |
10.1186/s12911-017-0472-y |
author2-role |
verfasserin |
title_sort |
signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
callnumber |
R858-859.7 |
title_auth |
A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
abstract |
Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. |
abstractGer |
Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. |
abstract_unstemmed |
Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
S2 |
title_short |
A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data |
url |
https://doi.org/10.1186/s12911-017-0472-y https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1 http://link.springer.com/article/10.1186/s12911-017-0472-y https://doaj.org/toc/1472-6947 |
remote_bool |
true |
author2 |
Jingcheng Du Jing Huang Susan S. Ellenberg Sean Hennessy Cui Tao Yong Chen |
author2Str |
Jingcheng Du Jing Huang Susan S. Ellenberg Sean Hennessy Cui Tao Yong Chen |
ppnlink |
328977306 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12911-017-0472-y |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T14:45:05.404Z |
_version_ |
1803569495181099009 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075409518</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309133845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-017-0472-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075409518</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3fd7f999e78e41e5b124ee253103fbe1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A signal detection method for temporal variation of adverse effect with vaccine adverse event reporting system data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background To identify safety signals by manual review of individual report in large surveillance databases is time consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines (number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations) may vary substantially across reporting years. Current surveillance methods seldom consider these variations in signal detection, and reports from different years are typically collapsed together to conduct safety analyses. However, merging reports from different years ignores the potential heterogeneity of reporting rates across years and may miss important safety signals. Method Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine, groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also introduce a new visualization tool to summarize the result of the proposed method when applied to multiple vaccine-adverse event combinations. Result We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting rates across years. The identified vaccine-event combinations with significant different reporting rates over years suggested potential safety issues due to changes in vaccines which require further investigation. Conclusion We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update on occurrence of adverse events and provide evidence for further investigations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneity testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vaccine Adverse Event Reporting System (VAERS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingcheng Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Susan S. Ellenberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sean Hennessy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cui Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Medical Informatics and Decision Making</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">17(2017), S2, Seite 93-100</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">14726947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:S2</subfield><subfield code="g">pages:93-100</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12911-017-0472-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3fd7f999e78e41e5b124ee253103fbe1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s12911-017-0472-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1472-6947</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="e">S2</subfield><subfield code="h">93-100</subfield></datafield></record></collection>
|
score |
7.3993616 |