Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach
Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract mo...
Ausführliche Beschreibung
Autor*in: |
Jiao Ye [verfasserIn] Jun Chen [verfasserIn] Hua Bai [verfasserIn] Yifan Yue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sustainability - MDPI AG, 2009, 10(2018), 7, p 2194 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:7, p 2194 |
Links: |
---|
DOI / URN: |
10.3390/su10072194 |
---|
Katalog-ID: |
DOAJ075843226 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075843226 | ||
003 | DE-627 | ||
005 | 20230309135936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/su10072194 |2 doi | |
035 | |a (DE-627)DOAJ075843226 | ||
035 | |a (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TD194-195 | |
050 | 0 | |a TJ807-830 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Jiao Ye |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. | ||
650 | 4 | |a transfer commuting | |
650 | 4 | |a attitudinal survey | |
650 | 4 | |a market segmentation | |
650 | 4 | |a structural equation modelling (SEM) | |
650 | 4 | |a K-means clustering | |
653 | 0 | |a Environmental effects of industries and plants | |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Jun Chen |e verfasserin |4 aut | |
700 | 0 | |a Hua Bai |e verfasserin |4 aut | |
700 | 0 | |a Yifan Yue |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sustainability |d MDPI AG, 2009 |g 10(2018), 7, p 2194 |w (DE-627)610604120 |w (DE-600)2518383-7 |x 20711050 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:7, p 2194 |
856 | 4 | 0 | |u https://doi.org/10.3390/su10072194 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2071-1050/10/7/2194 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2071-1050 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 7, p 2194 |
author_variant |
j y jy j c jc h b hb y y yy |
---|---|
matchkey_str |
article:20711050:2018----::nlzntasecmuigtiueuigmres |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TD |
publishDate |
2018 |
allfields |
10.3390/su10072194 doi (DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Jiao Ye verfasserin aut Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences Jun Chen verfasserin aut Hua Bai verfasserin aut Yifan Yue verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 7, p 2194 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:7, p 2194 https://doi.org/10.3390/su10072194 kostenfrei https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 kostenfrei http://www.mdpi.com/2071-1050/10/7/2194 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 7, p 2194 |
spelling |
10.3390/su10072194 doi (DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Jiao Ye verfasserin aut Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences Jun Chen verfasserin aut Hua Bai verfasserin aut Yifan Yue verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 7, p 2194 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:7, p 2194 https://doi.org/10.3390/su10072194 kostenfrei https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 kostenfrei http://www.mdpi.com/2071-1050/10/7/2194 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 7, p 2194 |
allfields_unstemmed |
10.3390/su10072194 doi (DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Jiao Ye verfasserin aut Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences Jun Chen verfasserin aut Hua Bai verfasserin aut Yifan Yue verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 7, p 2194 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:7, p 2194 https://doi.org/10.3390/su10072194 kostenfrei https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 kostenfrei http://www.mdpi.com/2071-1050/10/7/2194 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 7, p 2194 |
allfieldsGer |
10.3390/su10072194 doi (DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Jiao Ye verfasserin aut Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences Jun Chen verfasserin aut Hua Bai verfasserin aut Yifan Yue verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 7, p 2194 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:7, p 2194 https://doi.org/10.3390/su10072194 kostenfrei https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 kostenfrei http://www.mdpi.com/2071-1050/10/7/2194 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 7, p 2194 |
allfieldsSound |
10.3390/su10072194 doi (DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 DE-627 ger DE-627 rakwb eng TD194-195 TJ807-830 GE1-350 Jiao Ye verfasserin aut Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences Jun Chen verfasserin aut Hua Bai verfasserin aut Yifan Yue verfasserin aut In Sustainability MDPI AG, 2009 10(2018), 7, p 2194 (DE-627)610604120 (DE-600)2518383-7 20711050 nnns volume:10 year:2018 number:7, p 2194 https://doi.org/10.3390/su10072194 kostenfrei https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 kostenfrei http://www.mdpi.com/2071-1050/10/7/2194 kostenfrei https://doaj.org/toc/2071-1050 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 10 2018 7, p 2194 |
language |
English |
source |
In Sustainability 10(2018), 7, p 2194 volume:10 year:2018 number:7, p 2194 |
sourceStr |
In Sustainability 10(2018), 7, p 2194 volume:10 year:2018 number:7, p 2194 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering Environmental effects of industries and plants Renewable energy sources Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Sustainability |
authorswithroles_txt_mv |
Jiao Ye @@aut@@ Jun Chen @@aut@@ Hua Bai @@aut@@ Yifan Yue @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
610604120 |
id |
DOAJ075843226 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075843226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309135936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su10072194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075843226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiao Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer commuting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitudinal survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">market segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural equation modelling (SEM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 7, p 2194</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 2194</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su10072194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2071-1050/10/7/2194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 2194</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiao Ye |
spellingShingle |
Jiao Ye misc TD194-195 misc TJ807-830 misc GE1-350 misc transfer commuting misc attitudinal survey misc market segmentation misc structural equation modelling (SEM) misc K-means clustering misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
authorStr |
Jiao Ye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604120 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TD194-195 |
illustrated |
Not Illustrated |
issn |
20711050 |
topic_title |
TD194-195 TJ807-830 GE1-350 Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach transfer commuting attitudinal survey market segmentation structural equation modelling (SEM) K-means clustering |
topic |
misc TD194-195 misc TJ807-830 misc GE1-350 misc transfer commuting misc attitudinal survey misc market segmentation misc structural equation modelling (SEM) misc K-means clustering misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_unstemmed |
misc TD194-195 misc TJ807-830 misc GE1-350 misc transfer commuting misc attitudinal survey misc market segmentation misc structural equation modelling (SEM) misc K-means clustering misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
topic_browse |
misc TD194-195 misc TJ807-830 misc GE1-350 misc transfer commuting misc attitudinal survey misc market segmentation misc structural equation modelling (SEM) misc K-means clustering misc Environmental effects of industries and plants misc Renewable energy sources misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sustainability |
hierarchy_parent_id |
610604120 |
hierarchy_top_title |
Sustainability |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604120 (DE-600)2518383-7 |
title |
Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
ctrlnum |
(DE-627)DOAJ075843226 (DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8 |
title_full |
Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
author_sort |
Jiao Ye |
journal |
Sustainability |
journalStr |
Sustainability |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Jiao Ye Jun Chen Hua Bai Yifan Yue |
container_volume |
10 |
class |
TD194-195 TJ807-830 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiao Ye |
doi_str_mv |
10.3390/su10072194 |
author2-role |
verfasserin |
title_sort |
analyzing transfer commuting attitudes using a market segmentation approach |
callnumber |
TD194-195 |
title_auth |
Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
abstract |
Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. |
abstractGer |
Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. |
abstract_unstemmed |
Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 2194 |
title_short |
Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach |
url |
https://doi.org/10.3390/su10072194 https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8 http://www.mdpi.com/2071-1050/10/7/2194 https://doaj.org/toc/2071-1050 |
remote_bool |
true |
author2 |
Jun Chen Hua Bai Yifan Yue |
author2Str |
Jun Chen Hua Bai Yifan Yue |
ppnlink |
610604120 |
callnumber-subject |
TD - Environmental Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/su10072194 |
callnumber-a |
TD194-195 |
up_date |
2024-07-03T17:08:27.317Z |
_version_ |
1803578514935382017 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075843226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309135936.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/su10072194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075843226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJaed67e6015e74f6a91e96b7f42fbe6e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD194-195</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ807-830</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiao Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing Transfer Commuting Attitudes Using a Market Segmentation Approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Commuting by transfer in the public transit network is a green travel choice compared to private cars which should be encouraged when direct transit lines cannot take the commuters to their destinations. Therefore, transfer commuting attitudes are important for finding appropriate ways to attract more transfer commuters. Firstly, since attitudes are usually unobserved, a combined revealed preference (RP) and stated preference (SP) survey was conducted in Nanjing, China to obtain the observed attitudinal variables. Then the market segmentation approach including the factor analysis, the structural equation modelling (SEM) model and the K-means clustering method was used to identify the underlying attitudinal factors and variables and analyze the interrelationship between them. Six segments were identified by four key factors including the willingness to transfer, the sensitivity to time, the need for flexibility and the desire for comfort. The sensitivity to time is the most important factor for commuters influencing their willingness to transfer. The socio-economic features of each segment were also analyzed and compared. The result shows that socio-economic features have a great impact on the willingness to transfer. Corresponding policy and strategy implications to increase transfer commuting proportion were finally proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transfer commuting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attitudinal survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">market segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">structural equation modelling (SEM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-means clustering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental effects of industries and plants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yifan Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sustainability</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">10(2018), 7, p 2194</subfield><subfield code="w">(DE-627)610604120</subfield><subfield code="w">(DE-600)2518383-7</subfield><subfield code="x">20711050</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7, p 2194</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/su10072194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/aed67e6015e74f6a91e96b7f42fbe6e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2071-1050/10/7/2194</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2071-1050</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">7, p 2194</subfield></datafield></record></collection>
|
score |
7.401513 |