Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China
Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban grow...
Ausführliche Beschreibung
Autor*in: |
Renyang Wang [verfasserIn] Qingsong He [verfasserIn] Lu Zhang [verfasserIn] Huiying Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 18(2021), 11013, p 11013 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2021 ; number:11013, p 11013 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph182111013 |
---|
Katalog-ID: |
DOAJ075934841 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ075934841 | ||
003 | DE-627 | ||
005 | 20230309140554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph182111013 |2 doi | |
035 | |a (DE-627)DOAJ075934841 | ||
035 | |a (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Renyang Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. | ||
650 | 4 | |a urban vitality | |
650 | 4 | |a urban form | |
650 | 4 | |a urban growth pattern | |
650 | 4 | |a cellular automata | |
650 | 4 | |a genetic algorithm | |
650 | 4 | |a Wuhan | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Qingsong He |e verfasserin |4 aut | |
700 | 0 | |a Lu Zhang |e verfasserin |4 aut | |
700 | 0 | |a Huiying Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 18(2021), 11013, p 11013 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2021 |g number:11013, p 11013 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph182111013 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/18/21/11013 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2021 |e 11013, p 11013 |
author_variant |
r w rw q h qh l z lz h w hw |
---|---|
matchkey_str |
article:16604601:2021----::opigellruoaanaeeiagrtmoeeaevbatraf |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/ijerph182111013 doi (DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac DE-627 ger DE-627 rakwb eng Renyang Wang verfasserin aut Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R Qingsong He verfasserin aut Lu Zhang verfasserin aut Huiying Wang verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 11013, p 11013 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:11013, p 11013 https://doi.org/10.3390/ijerph182111013 kostenfrei https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac kostenfrei https://www.mdpi.com/1660-4601/18/21/11013 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 11013, p 11013 |
spelling |
10.3390/ijerph182111013 doi (DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac DE-627 ger DE-627 rakwb eng Renyang Wang verfasserin aut Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R Qingsong He verfasserin aut Lu Zhang verfasserin aut Huiying Wang verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 11013, p 11013 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:11013, p 11013 https://doi.org/10.3390/ijerph182111013 kostenfrei https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac kostenfrei https://www.mdpi.com/1660-4601/18/21/11013 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 11013, p 11013 |
allfields_unstemmed |
10.3390/ijerph182111013 doi (DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac DE-627 ger DE-627 rakwb eng Renyang Wang verfasserin aut Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R Qingsong He verfasserin aut Lu Zhang verfasserin aut Huiying Wang verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 11013, p 11013 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:11013, p 11013 https://doi.org/10.3390/ijerph182111013 kostenfrei https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac kostenfrei https://www.mdpi.com/1660-4601/18/21/11013 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 11013, p 11013 |
allfieldsGer |
10.3390/ijerph182111013 doi (DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac DE-627 ger DE-627 rakwb eng Renyang Wang verfasserin aut Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R Qingsong He verfasserin aut Lu Zhang verfasserin aut Huiying Wang verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 11013, p 11013 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:11013, p 11013 https://doi.org/10.3390/ijerph182111013 kostenfrei https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac kostenfrei https://www.mdpi.com/1660-4601/18/21/11013 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 11013, p 11013 |
allfieldsSound |
10.3390/ijerph182111013 doi (DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac DE-627 ger DE-627 rakwb eng Renyang Wang verfasserin aut Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R Qingsong He verfasserin aut Lu Zhang verfasserin aut Huiying Wang verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 18(2021), 11013, p 11013 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:18 year:2021 number:11013, p 11013 https://doi.org/10.3390/ijerph182111013 kostenfrei https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac kostenfrei https://www.mdpi.com/1660-4601/18/21/11013 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2021 11013, p 11013 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 18(2021), 11013, p 11013 volume:18 year:2021 number:11013, p 11013 |
sourceStr |
In International Journal of Environmental Research and Public Health 18(2021), 11013, p 11013 volume:18 year:2021 number:11013, p 11013 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Renyang Wang @@aut@@ Qingsong He @@aut@@ Lu Zhang @@aut@@ Huiying Wang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ075934841 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075934841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309140554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph182111013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075934841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Renyang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban vitality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban growth pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular automata</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wuhan</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingsong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiying Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">18(2021), 11013, p 11013</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11013, p 11013</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph182111013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/18/21/11013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield><subfield code="e">11013, p 11013</subfield></datafield></record></collection>
|
author |
Renyang Wang |
spellingShingle |
Renyang Wang misc urban vitality misc urban form misc urban growth pattern misc cellular automata misc genetic algorithm misc Wuhan misc Medicine misc R Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
authorStr |
Renyang Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China urban vitality urban form urban growth pattern cellular automata genetic algorithm Wuhan |
topic |
misc urban vitality misc urban form misc urban growth pattern misc cellular automata misc genetic algorithm misc Wuhan misc Medicine misc R |
topic_unstemmed |
misc urban vitality misc urban form misc urban growth pattern misc cellular automata misc genetic algorithm misc Wuhan misc Medicine misc R |
topic_browse |
misc urban vitality misc urban form misc urban growth pattern misc cellular automata misc genetic algorithm misc Wuhan misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
ctrlnum |
(DE-627)DOAJ075934841 (DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac |
title_full |
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
author_sort |
Renyang Wang |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Renyang Wang Qingsong He Lu Zhang Huiying Wang |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Renyang Wang |
doi_str_mv |
10.3390/ijerph182111013 |
author2-role |
verfasserin |
title_sort |
coupling cellular automata and a genetic algorithm to generate a vibrant urban form—a case study of wuhan, china |
title_auth |
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
abstract |
Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. |
abstractGer |
Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. |
abstract_unstemmed |
Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11013, p 11013 |
title_short |
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
url |
https://doi.org/10.3390/ijerph182111013 https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac https://www.mdpi.com/1660-4601/18/21/11013 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Qingsong He Lu Zhang Huiying Wang |
author2Str |
Qingsong He Lu Zhang Huiying Wang |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph182111013 |
up_date |
2024-07-03T17:39:53.827Z |
_version_ |
1803580493092880384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ075934841</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309140554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph182111013</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ075934841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5e169b20d76e4f62ab760248d74a93ac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Renyang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km<sup<2</sup<, 102.69 km<sup<2</sup<, and 23.48 km<sup<2</sup<, respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban vitality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">urban growth pattern</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular automata</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genetic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wuhan</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingsong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huiying Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">18(2021), 11013, p 11013</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:11013, p 11013</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph182111013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5e169b20d76e4f62ab760248d74a93ac</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/18/21/11013</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2021</subfield><subfield code="e">11013, p 11013</subfield></datafield></record></collection>
|
score |
7.4019136 |