Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity...
Ausführliche Beschreibung
Autor*in: |
Zhang Lei [verfasserIn] Pan Jing [verfasserIn] Zhang Zhang [verfasserIn] Wu Hao [verfasserIn] Yao Ni [verfasserIn] Cai Dawei [verfasserIn] Xu Yingxin [verfasserIn] Zhang Jin [verfasserIn] Sun Guofei [verfasserIn] Wang Liqiang [verfasserIn] Geng Weidong [verfasserIn] Jin Wenguang [verfasserIn] Fang Wei [verfasserIn] Di Dawei [verfasserIn] Tong Limin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Opto-Electronic Advances - Institue of Optics and Electronics, Chinese Academy of Sciences, 2021, 3(2020), 3, Seite 190022-1-190022-7 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2020 ; number:3 ; pages:190022-1-190022-7 |
Links: |
---|
DOI / URN: |
10.29026/oea.2020.190022 |
---|
Katalog-ID: |
DOAJ076296385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ076296385 | ||
003 | DE-627 | ||
005 | 20230309142533.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.29026/oea.2020.190022 |2 doi | |
035 | |a (DE-627)DOAJ076296385 | ||
035 | |a (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC350-467 | |
100 | 0 | |a Zhang Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. | ||
650 | 4 | |a optical micro/nanofiber | |
650 | 4 | |a pressure sensor | |
650 | 4 | |a tactile sensor | |
650 | 4 | |a wearable sensor | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a Pan Jing |e verfasserin |4 aut | |
700 | 0 | |a Zhang Zhang |e verfasserin |4 aut | |
700 | 0 | |a Wu Hao |e verfasserin |4 aut | |
700 | 0 | |a Yao Ni |e verfasserin |4 aut | |
700 | 0 | |a Cai Dawei |e verfasserin |4 aut | |
700 | 0 | |a Xu Yingxin |e verfasserin |4 aut | |
700 | 0 | |a Zhang Jin |e verfasserin |4 aut | |
700 | 0 | |a Sun Guofei |e verfasserin |4 aut | |
700 | 0 | |a Wang Liqiang |e verfasserin |4 aut | |
700 | 0 | |a Geng Weidong |e verfasserin |4 aut | |
700 | 0 | |a Jin Wenguang |e verfasserin |4 aut | |
700 | 0 | |a Fang Wei |e verfasserin |4 aut | |
700 | 0 | |a Di Dawei |e verfasserin |4 aut | |
700 | 0 | |a Tong Limin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Opto-Electronic Advances |d Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 |g 3(2020), 3, Seite 190022-1-190022-7 |w (DE-627)DOAJ07861922X |x 20964579 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2020 |g number:3 |g pages:190022-1-190022-7 |
856 | 4 | 0 | |u https://doi.org/10.29026/oea.2020.190022 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 |z kostenfrei |
856 | 4 | 0 | |u http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2096-4579 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 3 |j 2020 |e 3 |h 190022-1-190022-7 |
author_variant |
z l zl p j pj z z zz w h wh y n yn c d cd x y xy z j zj s g sg w l wl g w gw j w jw f w fw d d dd t l tl |
---|---|
matchkey_str |
article:20964579:2020----::lrsniieknieerbepiasnosaeo |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.29026/oea.2020.190022 doi (DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 DE-627 ger DE-627 rakwb eng QC350-467 Zhang Lei verfasserin aut Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light Pan Jing verfasserin aut Zhang Zhang verfasserin aut Wu Hao verfasserin aut Yao Ni verfasserin aut Cai Dawei verfasserin aut Xu Yingxin verfasserin aut Zhang Jin verfasserin aut Sun Guofei verfasserin aut Wang Liqiang verfasserin aut Geng Weidong verfasserin aut Jin Wenguang verfasserin aut Fang Wei verfasserin aut Di Dawei verfasserin aut Tong Limin verfasserin aut In Opto-Electronic Advances Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 3(2020), 3, Seite 190022-1-190022-7 (DE-627)DOAJ07861922X 20964579 nnns volume:3 year:2020 number:3 pages:190022-1-190022-7 https://doi.org/10.29026/oea.2020.190022 kostenfrei https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 kostenfrei http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 kostenfrei https://doaj.org/toc/2096-4579 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 3 2020 3 190022-1-190022-7 |
spelling |
10.29026/oea.2020.190022 doi (DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 DE-627 ger DE-627 rakwb eng QC350-467 Zhang Lei verfasserin aut Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light Pan Jing verfasserin aut Zhang Zhang verfasserin aut Wu Hao verfasserin aut Yao Ni verfasserin aut Cai Dawei verfasserin aut Xu Yingxin verfasserin aut Zhang Jin verfasserin aut Sun Guofei verfasserin aut Wang Liqiang verfasserin aut Geng Weidong verfasserin aut Jin Wenguang verfasserin aut Fang Wei verfasserin aut Di Dawei verfasserin aut Tong Limin verfasserin aut In Opto-Electronic Advances Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 3(2020), 3, Seite 190022-1-190022-7 (DE-627)DOAJ07861922X 20964579 nnns volume:3 year:2020 number:3 pages:190022-1-190022-7 https://doi.org/10.29026/oea.2020.190022 kostenfrei https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 kostenfrei http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 kostenfrei https://doaj.org/toc/2096-4579 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 3 2020 3 190022-1-190022-7 |
allfields_unstemmed |
10.29026/oea.2020.190022 doi (DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 DE-627 ger DE-627 rakwb eng QC350-467 Zhang Lei verfasserin aut Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light Pan Jing verfasserin aut Zhang Zhang verfasserin aut Wu Hao verfasserin aut Yao Ni verfasserin aut Cai Dawei verfasserin aut Xu Yingxin verfasserin aut Zhang Jin verfasserin aut Sun Guofei verfasserin aut Wang Liqiang verfasserin aut Geng Weidong verfasserin aut Jin Wenguang verfasserin aut Fang Wei verfasserin aut Di Dawei verfasserin aut Tong Limin verfasserin aut In Opto-Electronic Advances Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 3(2020), 3, Seite 190022-1-190022-7 (DE-627)DOAJ07861922X 20964579 nnns volume:3 year:2020 number:3 pages:190022-1-190022-7 https://doi.org/10.29026/oea.2020.190022 kostenfrei https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 kostenfrei http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 kostenfrei https://doaj.org/toc/2096-4579 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 3 2020 3 190022-1-190022-7 |
allfieldsGer |
10.29026/oea.2020.190022 doi (DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 DE-627 ger DE-627 rakwb eng QC350-467 Zhang Lei verfasserin aut Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light Pan Jing verfasserin aut Zhang Zhang verfasserin aut Wu Hao verfasserin aut Yao Ni verfasserin aut Cai Dawei verfasserin aut Xu Yingxin verfasserin aut Zhang Jin verfasserin aut Sun Guofei verfasserin aut Wang Liqiang verfasserin aut Geng Weidong verfasserin aut Jin Wenguang verfasserin aut Fang Wei verfasserin aut Di Dawei verfasserin aut Tong Limin verfasserin aut In Opto-Electronic Advances Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 3(2020), 3, Seite 190022-1-190022-7 (DE-627)DOAJ07861922X 20964579 nnns volume:3 year:2020 number:3 pages:190022-1-190022-7 https://doi.org/10.29026/oea.2020.190022 kostenfrei https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 kostenfrei http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 kostenfrei https://doaj.org/toc/2096-4579 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 3 2020 3 190022-1-190022-7 |
allfieldsSound |
10.29026/oea.2020.190022 doi (DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 DE-627 ger DE-627 rakwb eng QC350-467 Zhang Lei verfasserin aut Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light Pan Jing verfasserin aut Zhang Zhang verfasserin aut Wu Hao verfasserin aut Yao Ni verfasserin aut Cai Dawei verfasserin aut Xu Yingxin verfasserin aut Zhang Jin verfasserin aut Sun Guofei verfasserin aut Wang Liqiang verfasserin aut Geng Weidong verfasserin aut Jin Wenguang verfasserin aut Fang Wei verfasserin aut Di Dawei verfasserin aut Tong Limin verfasserin aut In Opto-Electronic Advances Institue of Optics and Electronics, Chinese Academy of Sciences, 2021 3(2020), 3, Seite 190022-1-190022-7 (DE-627)DOAJ07861922X 20964579 nnns volume:3 year:2020 number:3 pages:190022-1-190022-7 https://doi.org/10.29026/oea.2020.190022 kostenfrei https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 kostenfrei http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 kostenfrei https://doaj.org/toc/2096-4579 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 3 2020 3 190022-1-190022-7 |
language |
English |
source |
In Opto-Electronic Advances 3(2020), 3, Seite 190022-1-190022-7 volume:3 year:2020 number:3 pages:190022-1-190022-7 |
sourceStr |
In Opto-Electronic Advances 3(2020), 3, Seite 190022-1-190022-7 volume:3 year:2020 number:3 pages:190022-1-190022-7 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
optical micro/nanofiber pressure sensor tactile sensor wearable sensor Optics. Light |
isfreeaccess_bool |
true |
container_title |
Opto-Electronic Advances |
authorswithroles_txt_mv |
Zhang Lei @@aut@@ Pan Jing @@aut@@ Zhang Zhang @@aut@@ Wu Hao @@aut@@ Yao Ni @@aut@@ Cai Dawei @@aut@@ Xu Yingxin @@aut@@ Zhang Jin @@aut@@ Sun Guofei @@aut@@ Wang Liqiang @@aut@@ Geng Weidong @@aut@@ Jin Wenguang @@aut@@ Fang Wei @@aut@@ Di Dawei @@aut@@ Tong Limin @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ07861922X |
id |
DOAJ076296385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076296385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309142533.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29026/oea.2020.190022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076296385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhang Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical micro/nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pressure sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tactile sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wearable sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wu Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cai Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Yingxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Guofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Liqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Geng Weidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Wenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Limin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Opto-Electronic Advances</subfield><subfield code="d">Institue of Optics and Electronics, Chinese Academy of Sciences, 2021</subfield><subfield code="g">3(2020), 3, Seite 190022-1-190022-7</subfield><subfield code="w">(DE-627)DOAJ07861922X</subfield><subfield code="x">20964579</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:190022-1-190022-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29026/oea.2020.190022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.oejournal.org/article/doi/10.29026/oea.2020.190022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2096-4579</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">190022-1-190022-7</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zhang Lei |
spellingShingle |
Zhang Lei misc QC350-467 misc optical micro/nanofiber misc pressure sensor misc tactile sensor misc wearable sensor misc Optics. Light Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
authorStr |
Zhang Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ07861922X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC350-467 |
illustrated |
Not Illustrated |
issn |
20964579 |
topic_title |
QC350-467 Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers optical micro/nanofiber pressure sensor tactile sensor wearable sensor |
topic |
misc QC350-467 misc optical micro/nanofiber misc pressure sensor misc tactile sensor misc wearable sensor misc Optics. Light |
topic_unstemmed |
misc QC350-467 misc optical micro/nanofiber misc pressure sensor misc tactile sensor misc wearable sensor misc Optics. Light |
topic_browse |
misc QC350-467 misc optical micro/nanofiber misc pressure sensor misc tactile sensor misc wearable sensor misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Opto-Electronic Advances |
hierarchy_parent_id |
DOAJ07861922X |
hierarchy_top_title |
Opto-Electronic Advances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ07861922X |
title |
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
ctrlnum |
(DE-627)DOAJ076296385 (DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80 |
title_full |
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
author_sort |
Zhang Lei |
journal |
Opto-Electronic Advances |
journalStr |
Opto-Electronic Advances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
190022 |
author_browse |
Zhang Lei Pan Jing Zhang Zhang Wu Hao Yao Ni Cai Dawei Xu Yingxin Zhang Jin Sun Guofei Wang Liqiang Geng Weidong Jin Wenguang Fang Wei Di Dawei Tong Limin |
container_volume |
3 |
class |
QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang Lei |
doi_str_mv |
10.29026/oea.2020.190022 |
author2-role |
verfasserin |
title_sort |
ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
callnumber |
QC350-467 |
title_auth |
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
abstract |
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. |
abstractGer |
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. |
abstract_unstemmed |
Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
3 |
title_short |
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers |
url |
https://doi.org/10.29026/oea.2020.190022 https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80 http://www.oejournal.org/article/doi/10.29026/oea.2020.190022 https://doaj.org/toc/2096-4579 |
remote_bool |
true |
author2 |
Pan Jing Zhang Zhang Wu Hao Yao Ni Cai Dawei Xu Yingxin Zhang Jin Sun Guofei Wang Liqiang Geng Weidong Jin Wenguang Fang Wei Di Dawei Tong Limin |
author2Str |
Pan Jing Zhang Zhang Wu Hao Yao Ni Cai Dawei Xu Yingxin Zhang Jin Sun Guofei Wang Liqiang Geng Weidong Jin Wenguang Fang Wei Di Dawei Tong Limin |
ppnlink |
DOAJ07861922X |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.29026/oea.2020.190022 |
callnumber-a |
QC350-467 |
up_date |
2024-07-03T19:42:15.978Z |
_version_ |
1803588191890964480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076296385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309142533.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29026/oea.2020.190022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076296385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc984ffd2c92f4172b1a650ef82a93c80</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhang Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electronic skin, a class of wearable electronic sensors that mimic the functionalities of human skin, has made remarkable success in applications including health monitoring, human-machine interaction and electronic-biological interfaces. While electronic skin continues to achieve higher sensitivity and faster response, its ultimate performance is fundamentally limited by the nature of low-frequency AC currents. Herein, highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers (MNFs) in thin layers of polydimethylsiloxane (PDMS). Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli, the skin-like optical sensors show ultrahigh sensitivity (1870 kPa-1), low detection limit (7 mPa) and fast response (10 μs) for pressure sensing, significantly exceeding the performance metrics of state-of-the-art electronic skins. Electromagnetic interference (EMI)-free detection of high-frequency vibrations, wrist pulse and human voice are realized. Moreover, a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated. These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical micro/nanofiber</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pressure sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tactile sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wearable sensor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wu Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yao Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cai Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Yingxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhang Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sun Guofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wang Liqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Geng Weidong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin Wenguang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Di Dawei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Limin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Opto-Electronic Advances</subfield><subfield code="d">Institue of Optics and Electronics, Chinese Academy of Sciences, 2021</subfield><subfield code="g">3(2020), 3, Seite 190022-1-190022-7</subfield><subfield code="w">(DE-627)DOAJ07861922X</subfield><subfield code="x">20964579</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:190022-1-190022-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29026/oea.2020.190022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c984ffd2c92f4172b1a650ef82a93c80</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.oejournal.org/article/doi/10.29026/oea.2020.190022</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2096-4579</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2020</subfield><subfield code="e">3</subfield><subfield code="h">190022-1-190022-7</subfield></datafield></record></collection>
|
score |
7.399596 |