Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model
Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the...
Ausführliche Beschreibung
Autor*in: |
ZHENG Dezhong [verfasserIn] YANG Yuanyuan [verfasserIn] XIE Zhe [verfasserIn] NI Yangfan [verfasserIn] LI Wentao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Chinesisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Shanghai Jiaotong Daxue xuebao - Editorial Office of Journal of Shanghai Jiao Tong University, 2021, 55(2021), 02, Seite 131-140 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2021 ; number:02 ; pages:131-140 |
Links: |
---|
DOI / URN: |
10.16183/j.cnki.jsjtu.2020.082 |
---|
Katalog-ID: |
DOAJ076309096 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ076309096 | ||
003 | DE-627 | ||
005 | 20230309142610.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||chi c | ||
024 | 7 | |a 10.16183/j.cnki.jsjtu.2020.082 |2 doi | |
035 | |a (DE-627)DOAJ076309096 | ||
035 | |a (DE-599)DOAJb3062be502e4437dade77db9156d233a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a chi | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a TP155-156 | |
050 | 0 | |a VM1-989 | |
100 | 0 | |a ZHENG Dezhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. | ||
650 | 4 | |a artificial intelligence training | |
650 | 4 | |a dataset division | |
650 | 4 | |a deep neural networks | |
650 | 4 | |a gaussian mixture model | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Chemical engineering | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
700 | 0 | |a YANG Yuanyuan |e verfasserin |4 aut | |
700 | 0 | |a XIE Zhe |e verfasserin |4 aut | |
700 | 0 | |a NI Yangfan |e verfasserin |4 aut | |
700 | 0 | |a LI Wentao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Shanghai Jiaotong Daxue xuebao |d Editorial Office of Journal of Shanghai Jiao Tong University, 2021 |g 55(2021), 02, Seite 131-140 |w (DE-627)1680950819 |x 10062467 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2021 |g number:02 |g pages:131-140 |
856 | 4 | 0 | |u https://doi.org/10.16183/j.cnki.jsjtu.2020.082 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b3062be502e4437dade77db9156d233a |z kostenfrei |
856 | 4 | 0 | |u http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1006-2467 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_2817 | ||
951 | |a AR | ||
952 | |d 55 |j 2021 |e 02 |h 131-140 |
author_variant |
z d zd y y yy x z xz n y ny l w lw |
---|---|
matchkey_str |
article:10062467:2021----::aapitnmtoodsacmtilannbsdn |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.16183/j.cnki.jsjtu.2020.082 doi (DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a DE-627 ger DE-627 rakwb chi TA1-2040 TP155-156 VM1-989 ZHENG Dezhong verfasserin aut Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering YANG Yuanyuan verfasserin aut XIE Zhe verfasserin aut NI Yangfan verfasserin aut LI Wentao verfasserin aut In Shanghai Jiaotong Daxue xuebao Editorial Office of Journal of Shanghai Jiao Tong University, 2021 55(2021), 02, Seite 131-140 (DE-627)1680950819 10062467 nnns volume:55 year:2021 number:02 pages:131-140 https://doi.org/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/article/b3062be502e4437dade77db9156d233a kostenfrei http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/toc/1006-2467 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 AR 55 2021 02 131-140 |
spelling |
10.16183/j.cnki.jsjtu.2020.082 doi (DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a DE-627 ger DE-627 rakwb chi TA1-2040 TP155-156 VM1-989 ZHENG Dezhong verfasserin aut Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering YANG Yuanyuan verfasserin aut XIE Zhe verfasserin aut NI Yangfan verfasserin aut LI Wentao verfasserin aut In Shanghai Jiaotong Daxue xuebao Editorial Office of Journal of Shanghai Jiao Tong University, 2021 55(2021), 02, Seite 131-140 (DE-627)1680950819 10062467 nnns volume:55 year:2021 number:02 pages:131-140 https://doi.org/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/article/b3062be502e4437dade77db9156d233a kostenfrei http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/toc/1006-2467 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 AR 55 2021 02 131-140 |
allfields_unstemmed |
10.16183/j.cnki.jsjtu.2020.082 doi (DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a DE-627 ger DE-627 rakwb chi TA1-2040 TP155-156 VM1-989 ZHENG Dezhong verfasserin aut Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering YANG Yuanyuan verfasserin aut XIE Zhe verfasserin aut NI Yangfan verfasserin aut LI Wentao verfasserin aut In Shanghai Jiaotong Daxue xuebao Editorial Office of Journal of Shanghai Jiao Tong University, 2021 55(2021), 02, Seite 131-140 (DE-627)1680950819 10062467 nnns volume:55 year:2021 number:02 pages:131-140 https://doi.org/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/article/b3062be502e4437dade77db9156d233a kostenfrei http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/toc/1006-2467 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 AR 55 2021 02 131-140 |
allfieldsGer |
10.16183/j.cnki.jsjtu.2020.082 doi (DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a DE-627 ger DE-627 rakwb chi TA1-2040 TP155-156 VM1-989 ZHENG Dezhong verfasserin aut Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering YANG Yuanyuan verfasserin aut XIE Zhe verfasserin aut NI Yangfan verfasserin aut LI Wentao verfasserin aut In Shanghai Jiaotong Daxue xuebao Editorial Office of Journal of Shanghai Jiao Tong University, 2021 55(2021), 02, Seite 131-140 (DE-627)1680950819 10062467 nnns volume:55 year:2021 number:02 pages:131-140 https://doi.org/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/article/b3062be502e4437dade77db9156d233a kostenfrei http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/toc/1006-2467 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 AR 55 2021 02 131-140 |
allfieldsSound |
10.16183/j.cnki.jsjtu.2020.082 doi (DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a DE-627 ger DE-627 rakwb chi TA1-2040 TP155-156 VM1-989 ZHENG Dezhong verfasserin aut Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering YANG Yuanyuan verfasserin aut XIE Zhe verfasserin aut NI Yangfan verfasserin aut LI Wentao verfasserin aut In Shanghai Jiaotong Daxue xuebao Editorial Office of Journal of Shanghai Jiao Tong University, 2021 55(2021), 02, Seite 131-140 (DE-627)1680950819 10062467 nnns volume:55 year:2021 number:02 pages:131-140 https://doi.org/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/article/b3062be502e4437dade77db9156d233a kostenfrei http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 kostenfrei https://doaj.org/toc/1006-2467 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 AR 55 2021 02 131-140 |
language |
Chinese |
source |
In Shanghai Jiaotong Daxue xuebao 55(2021), 02, Seite 131-140 volume:55 year:2021 number:02 pages:131-140 |
sourceStr |
In Shanghai Jiaotong Daxue xuebao 55(2021), 02, Seite 131-140 volume:55 year:2021 number:02 pages:131-140 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
artificial intelligence training dataset division deep neural networks gaussian mixture model Engineering (General). Civil engineering (General) Chemical engineering Naval architecture. Shipbuilding. Marine engineering |
isfreeaccess_bool |
true |
container_title |
Shanghai Jiaotong Daxue xuebao |
authorswithroles_txt_mv |
ZHENG Dezhong @@aut@@ YANG Yuanyuan @@aut@@ XIE Zhe @@aut@@ NI Yangfan @@aut@@ LI Wentao @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1680950819 |
id |
DOAJ076309096 |
language_de |
chinesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076309096</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309142610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076309096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb3062be502e4437dade77db9156d233a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155-156</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">ZHENG Dezhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dataset division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian mixture model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">YANG Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">XIE Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">NI Yangfan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LI Wentao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Shanghai Jiaotong Daxue xuebao</subfield><subfield code="d">Editorial Office of Journal of Shanghai Jiao Tong University, 2021</subfield><subfield code="g">55(2021), 02, Seite 131-140</subfield><subfield code="w">(DE-627)1680950819</subfield><subfield code="x">10062467</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:02</subfield><subfield code="g">pages:131-140</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b3062be502e4437dade77db9156d233a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1006-2467</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="e">02</subfield><subfield code="h">131-140</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
ZHENG Dezhong |
spellingShingle |
ZHENG Dezhong misc TA1-2040 misc TP155-156 misc VM1-989 misc artificial intelligence training misc dataset division misc deep neural networks misc gaussian mixture model misc Engineering (General). Civil engineering (General) misc Chemical engineering misc Naval architecture. Shipbuilding. Marine engineering Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
authorStr |
ZHENG Dezhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1680950819 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
10062467 |
topic_title |
TA1-2040 TP155-156 VM1-989 Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model artificial intelligence training dataset division deep neural networks gaussian mixture model |
topic |
misc TA1-2040 misc TP155-156 misc VM1-989 misc artificial intelligence training misc dataset division misc deep neural networks misc gaussian mixture model misc Engineering (General). Civil engineering (General) misc Chemical engineering misc Naval architecture. Shipbuilding. Marine engineering |
topic_unstemmed |
misc TA1-2040 misc TP155-156 misc VM1-989 misc artificial intelligence training misc dataset division misc deep neural networks misc gaussian mixture model misc Engineering (General). Civil engineering (General) misc Chemical engineering misc Naval architecture. Shipbuilding. Marine engineering |
topic_browse |
misc TA1-2040 misc TP155-156 misc VM1-989 misc artificial intelligence training misc dataset division misc deep neural networks misc gaussian mixture model misc Engineering (General). Civil engineering (General) misc Chemical engineering misc Naval architecture. Shipbuilding. Marine engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Shanghai Jiaotong Daxue xuebao |
hierarchy_parent_id |
1680950819 |
hierarchy_top_title |
Shanghai Jiaotong Daxue xuebao |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1680950819 |
title |
Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
ctrlnum |
(DE-627)DOAJ076309096 (DE-599)DOAJb3062be502e4437dade77db9156d233a |
title_full |
Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
author_sort |
ZHENG Dezhong |
journal |
Shanghai Jiaotong Daxue xuebao |
journalStr |
Shanghai Jiaotong Daxue xuebao |
callnumber-first-code |
T |
lang_code |
chi |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
131 |
author_browse |
ZHENG Dezhong YANG Yuanyuan XIE Zhe NI Yangfan LI Wentao |
container_volume |
55 |
class |
TA1-2040 TP155-156 VM1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
ZHENG Dezhong |
doi_str_mv |
10.16183/j.cnki.jsjtu.2020.082 |
author2-role |
verfasserin |
title_sort |
data splitting method of distance metric learning based on gaussian mixed model |
callnumber |
TA1-2040 |
title_auth |
Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
abstract |
Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. |
abstractGer |
Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. |
abstract_unstemmed |
Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_2817 |
container_issue |
02 |
title_short |
Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model |
url |
https://doi.org/10.16183/j.cnki.jsjtu.2020.082 https://doaj.org/article/b3062be502e4437dade77db9156d233a http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082 https://doaj.org/toc/1006-2467 |
remote_bool |
true |
author2 |
YANG Yuanyuan XIE Zhe NI Yangfan LI Wentao |
author2Str |
YANG Yuanyuan XIE Zhe NI Yangfan LI Wentao |
ppnlink |
1680950819 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.16183/j.cnki.jsjtu.2020.082 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T19:46:27.475Z |
_version_ |
1803588455604682752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076309096</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309142610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076309096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb3062be502e4437dade77db9156d233a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155-156</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">ZHENG Dezhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aimed at the problem of instability and deviation of multiple training model in limited samples, this paper proposes a method of distance metric learning based on the Gaussian mixture model, which can solve this problem more reasonably by dividing the dataset. Distance metric learning relies on the excellent feature extraction capabilities of deep neural networks to embed the original data into the new metric space. Then, based on the deep features, the Gaussian mixture model is used to cluster the analyzer and estimate the sample distribution in this new metric space. Finally, according to the characteristics of sample distribution, stratified sampling is used to reasonably divide the data. The research shows that the method proposed can better understand the characteristics of data distribution and obtain a more reasonable data division, thereby improving the accuracy and generalization of the model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dataset division</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gaussian mixture model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">YANG Yuanyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">XIE Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">NI Yangfan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LI Wentao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Shanghai Jiaotong Daxue xuebao</subfield><subfield code="d">Editorial Office of Journal of Shanghai Jiao Tong University, 2021</subfield><subfield code="g">55(2021), 02, Seite 131-140</subfield><subfield code="w">(DE-627)1680950819</subfield><subfield code="x">10062467</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:02</subfield><subfield code="g">pages:131-140</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b3062be502e4437dade77db9156d233a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://xuebao.sjtu.edu.cn/CN/10.16183/j.cnki.jsjtu.2020.082</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1006-2467</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="e">02</subfield><subfield code="h">131-140</subfield></datafield></record></collection>
|
score |
7.4019165 |