Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-re...
Ausführliche Beschreibung
Autor*in: |
Dong hyuck Choi [verfasserIn] Jinzeng Yang [verfasserIn] Yong Soo Kim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: Biochemistry and Biophysics Reports - Elsevier, 2016, 17(2019), Seite 182-190 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2019 ; pages:182-190 |
Links: |
---|
DOI / URN: |
10.1016/j.bbrep.2018.12.009 |
---|
Katalog-ID: |
DOAJ076466051 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ076466051 | ||
003 | DE-627 | ||
005 | 20230309143321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.bbrep.2018.12.009 |2 doi | |
035 | |a (DE-627)DOAJ076466051 | ||
035 | |a (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD415-436 | |
100 | 0 | |a Dong hyuck Choi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 | ||
653 | 0 | |a Biology (General) | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Jinzeng Yang |e verfasserin |4 aut | |
700 | 0 | |a Yong Soo Kim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biochemistry and Biophysics Reports |d Elsevier, 2016 |g 17(2019), Seite 182-190 |w (DE-627)833507761 |w (DE-600)2831046-9 |x 24055808 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2019 |g pages:182-190 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.bbrep.2018.12.009 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2405580818302103 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2405-5808 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2019 |h 182-190 |
author_variant |
d h c dhc j y jy y s k ysk |
---|---|
matchkey_str |
article:24055808:2019----::aayisprsepsntluceyetohidcdyysaiihbtoacmaidyrncit |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QH |
publishDate |
2019 |
allfields |
10.1016/j.bbrep.2018.12.009 doi (DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e DE-627 ger DE-627 rakwb eng QH301-705.5 QD415-436 Dong hyuck Choi verfasserin aut Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 Biology (General) Biochemistry Jinzeng Yang verfasserin aut Yong Soo Kim verfasserin aut In Biochemistry and Biophysics Reports Elsevier, 2016 17(2019), Seite 182-190 (DE-627)833507761 (DE-600)2831046-9 24055808 nnns volume:17 year:2019 pages:182-190 https://doi.org/10.1016/j.bbrep.2018.12.009 kostenfrei https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e kostenfrei http://www.sciencedirect.com/science/article/pii/S2405580818302103 kostenfrei https://doaj.org/toc/2405-5808 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2019 182-190 |
spelling |
10.1016/j.bbrep.2018.12.009 doi (DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e DE-627 ger DE-627 rakwb eng QH301-705.5 QD415-436 Dong hyuck Choi verfasserin aut Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 Biology (General) Biochemistry Jinzeng Yang verfasserin aut Yong Soo Kim verfasserin aut In Biochemistry and Biophysics Reports Elsevier, 2016 17(2019), Seite 182-190 (DE-627)833507761 (DE-600)2831046-9 24055808 nnns volume:17 year:2019 pages:182-190 https://doi.org/10.1016/j.bbrep.2018.12.009 kostenfrei https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e kostenfrei http://www.sciencedirect.com/science/article/pii/S2405580818302103 kostenfrei https://doaj.org/toc/2405-5808 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2019 182-190 |
allfields_unstemmed |
10.1016/j.bbrep.2018.12.009 doi (DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e DE-627 ger DE-627 rakwb eng QH301-705.5 QD415-436 Dong hyuck Choi verfasserin aut Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 Biology (General) Biochemistry Jinzeng Yang verfasserin aut Yong Soo Kim verfasserin aut In Biochemistry and Biophysics Reports Elsevier, 2016 17(2019), Seite 182-190 (DE-627)833507761 (DE-600)2831046-9 24055808 nnns volume:17 year:2019 pages:182-190 https://doi.org/10.1016/j.bbrep.2018.12.009 kostenfrei https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e kostenfrei http://www.sciencedirect.com/science/article/pii/S2405580818302103 kostenfrei https://doaj.org/toc/2405-5808 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2019 182-190 |
allfieldsGer |
10.1016/j.bbrep.2018.12.009 doi (DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e DE-627 ger DE-627 rakwb eng QH301-705.5 QD415-436 Dong hyuck Choi verfasserin aut Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 Biology (General) Biochemistry Jinzeng Yang verfasserin aut Yong Soo Kim verfasserin aut In Biochemistry and Biophysics Reports Elsevier, 2016 17(2019), Seite 182-190 (DE-627)833507761 (DE-600)2831046-9 24055808 nnns volume:17 year:2019 pages:182-190 https://doi.org/10.1016/j.bbrep.2018.12.009 kostenfrei https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e kostenfrei http://www.sciencedirect.com/science/article/pii/S2405580818302103 kostenfrei https://doaj.org/toc/2405-5808 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2019 182-190 |
allfieldsSound |
10.1016/j.bbrep.2018.12.009 doi (DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e DE-627 ger DE-627 rakwb eng QH301-705.5 QD415-436 Dong hyuck Choi verfasserin aut Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 Biology (General) Biochemistry Jinzeng Yang verfasserin aut Yong Soo Kim verfasserin aut In Biochemistry and Biophysics Reports Elsevier, 2016 17(2019), Seite 182-190 (DE-627)833507761 (DE-600)2831046-9 24055808 nnns volume:17 year:2019 pages:182-190 https://doi.org/10.1016/j.bbrep.2018.12.009 kostenfrei https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e kostenfrei http://www.sciencedirect.com/science/article/pii/S2405580818302103 kostenfrei https://doaj.org/toc/2405-5808 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 17 2019 182-190 |
language |
English |
source |
In Biochemistry and Biophysics Reports 17(2019), Seite 182-190 volume:17 year:2019 pages:182-190 |
sourceStr |
In Biochemistry and Biophysics Reports 17(2019), Seite 182-190 volume:17 year:2019 pages:182-190 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biology (General) Biochemistry |
isfreeaccess_bool |
true |
container_title |
Biochemistry and Biophysics Reports |
authorswithroles_txt_mv |
Dong hyuck Choi @@aut@@ Jinzeng Yang @@aut@@ Yong Soo Kim @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
833507761 |
id |
DOAJ076466051 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076466051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309143321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bbrep.2018.12.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076466051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dong hyuck Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinzeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Soo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biochemistry and Biophysics Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">17(2019), Seite 182-190</subfield><subfield code="w">(DE-627)833507761</subfield><subfield code="w">(DE-600)2831046-9</subfield><subfield code="x">24055808</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:182-190</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bbrep.2018.12.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405580818302103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-5808</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="h">182-190</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dong hyuck Choi |
spellingShingle |
Dong hyuck Choi misc QH301-705.5 misc QD415-436 misc Biology (General) misc Biochemistry Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
authorStr |
Dong hyuck Choi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)833507761 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
24055808 |
topic_title |
QH301-705.5 QD415-436 Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
topic |
misc QH301-705.5 misc QD415-436 misc Biology (General) misc Biochemistry |
topic_unstemmed |
misc QH301-705.5 misc QD415-436 misc Biology (General) misc Biochemistry |
topic_browse |
misc QH301-705.5 misc QD415-436 misc Biology (General) misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biochemistry and Biophysics Reports |
hierarchy_parent_id |
833507761 |
hierarchy_top_title |
Biochemistry and Biophysics Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)833507761 (DE-600)2831046-9 |
title |
Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
ctrlnum |
(DE-627)DOAJ076466051 (DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e |
title_full |
Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
author_sort |
Dong hyuck Choi |
journal |
Biochemistry and Biophysics Reports |
journalStr |
Biochemistry and Biophysics Reports |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
182 |
author_browse |
Dong hyuck Choi Jinzeng Yang Yong Soo Kim |
container_volume |
17 |
class |
QH301-705.5 QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Dong hyuck Choi |
doi_str_mv |
10.1016/j.bbrep.2018.12.009 |
author2-role |
verfasserin |
title_sort |
rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the akt/mtor pathway |
callnumber |
QH301-705.5 |
title_auth |
Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
abstract |
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 |
abstractGer |
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 |
abstract_unstemmed |
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway |
url |
https://doi.org/10.1016/j.bbrep.2018.12.009 https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e http://www.sciencedirect.com/science/article/pii/S2405580818302103 https://doaj.org/toc/2405-5808 |
remote_bool |
true |
author2 |
Jinzeng Yang Yong Soo Kim |
author2Str |
Jinzeng Yang Yong Soo Kim |
ppnlink |
833507761 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.bbrep.2018.12.009 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T20:39:59.234Z |
_version_ |
1803591823377039360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076466051</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309143321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bbrep.2018.12.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076466051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ55ccf99806e5445db767ce7ef0d4368e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dong hyuck Choi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Keywords: Myostatin, Propeptide, MTOR, Rapamycin, Transgenic mice, Mrf4</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinzeng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Soo Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biochemistry and Biophysics Reports</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">17(2019), Seite 182-190</subfield><subfield code="w">(DE-627)833507761</subfield><subfield code="w">(DE-600)2831046-9</subfield><subfield code="x">24055808</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:182-190</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bbrep.2018.12.009</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/55ccf99806e5445db767ce7ef0d4368e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405580818302103</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-5808</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="h">182-190</subfield></datafield></record></collection>
|
score |
7.3993053 |