A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods
A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to...
Ausführliche Beschreibung
Autor*in: |
Guangzhi Xu [verfasserIn] Xiaohui Ma [verfasserIn] Ping Chang [verfasserIn] Lin Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Atmosphere - MDPI AG, 2011, 11(2020), 6, p 628 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2020 ; number:6, p 628 |
Links: |
---|
DOI / URN: |
10.3390/atmos11060628 |
---|
Katalog-ID: |
DOAJ07675779X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07675779X | ||
003 | DE-627 | ||
005 | 20240412231737.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/atmos11060628 |2 doi | |
035 | |a (DE-627)DOAJ07675779X | ||
035 | |a (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC851-999 | |
100 | 0 | |a Guangzhi Xu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. | ||
650 | 4 | |a atmospheric river | |
650 | 4 | |a storm tracks | |
650 | 4 | |a tracking algorithm | |
653 | 0 | |a Meteorology. Climatology | |
700 | 0 | |a Xiaohui Ma |e verfasserin |4 aut | |
700 | 0 | |a Ping Chang |e verfasserin |4 aut | |
700 | 0 | |a Lin Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Atmosphere |d MDPI AG, 2011 |g 11(2020), 6, p 628 |w (DE-627)657584010 |w (DE-600)2605928-9 |x 20734433 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2020 |g number:6, p 628 |
856 | 4 | 0 | |u https://doi.org/10.3390/atmos11060628 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4433/11/6/628 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4433 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2020 |e 6, p 628 |
author_variant |
g x gx x m xm p c pc l w lw |
---|---|
matchkey_str |
article:20734433:2020----::cmaioonrhrhmshramshrcieseetdynwmgpoesnbsdehdnm |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.3390/atmos11060628 doi (DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 DE-627 ger DE-627 rakwb eng QC851-999 Guangzhi Xu verfasserin aut A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. atmospheric river storm tracks tracking algorithm Meteorology. Climatology Xiaohui Ma verfasserin aut Ping Chang verfasserin aut Lin Wang verfasserin aut In Atmosphere MDPI AG, 2011 11(2020), 6, p 628 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:11 year:2020 number:6, p 628 https://doi.org/10.3390/atmos11060628 kostenfrei https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 kostenfrei https://www.mdpi.com/2073-4433/11/6/628 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6, p 628 |
spelling |
10.3390/atmos11060628 doi (DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 DE-627 ger DE-627 rakwb eng QC851-999 Guangzhi Xu verfasserin aut A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. atmospheric river storm tracks tracking algorithm Meteorology. Climatology Xiaohui Ma verfasserin aut Ping Chang verfasserin aut Lin Wang verfasserin aut In Atmosphere MDPI AG, 2011 11(2020), 6, p 628 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:11 year:2020 number:6, p 628 https://doi.org/10.3390/atmos11060628 kostenfrei https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 kostenfrei https://www.mdpi.com/2073-4433/11/6/628 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6, p 628 |
allfields_unstemmed |
10.3390/atmos11060628 doi (DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 DE-627 ger DE-627 rakwb eng QC851-999 Guangzhi Xu verfasserin aut A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. atmospheric river storm tracks tracking algorithm Meteorology. Climatology Xiaohui Ma verfasserin aut Ping Chang verfasserin aut Lin Wang verfasserin aut In Atmosphere MDPI AG, 2011 11(2020), 6, p 628 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:11 year:2020 number:6, p 628 https://doi.org/10.3390/atmos11060628 kostenfrei https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 kostenfrei https://www.mdpi.com/2073-4433/11/6/628 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6, p 628 |
allfieldsGer |
10.3390/atmos11060628 doi (DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 DE-627 ger DE-627 rakwb eng QC851-999 Guangzhi Xu verfasserin aut A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. atmospheric river storm tracks tracking algorithm Meteorology. Climatology Xiaohui Ma verfasserin aut Ping Chang verfasserin aut Lin Wang verfasserin aut In Atmosphere MDPI AG, 2011 11(2020), 6, p 628 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:11 year:2020 number:6, p 628 https://doi.org/10.3390/atmos11060628 kostenfrei https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 kostenfrei https://www.mdpi.com/2073-4433/11/6/628 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6, p 628 |
allfieldsSound |
10.3390/atmos11060628 doi (DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 DE-627 ger DE-627 rakwb eng QC851-999 Guangzhi Xu verfasserin aut A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. atmospheric river storm tracks tracking algorithm Meteorology. Climatology Xiaohui Ma verfasserin aut Ping Chang verfasserin aut Lin Wang verfasserin aut In Atmosphere MDPI AG, 2011 11(2020), 6, p 628 (DE-627)657584010 (DE-600)2605928-9 20734433 nnns volume:11 year:2020 number:6, p 628 https://doi.org/10.3390/atmos11060628 kostenfrei https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 kostenfrei https://www.mdpi.com/2073-4433/11/6/628 kostenfrei https://doaj.org/toc/2073-4433 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6, p 628 |
language |
English |
source |
In Atmosphere 11(2020), 6, p 628 volume:11 year:2020 number:6, p 628 |
sourceStr |
In Atmosphere 11(2020), 6, p 628 volume:11 year:2020 number:6, p 628 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
atmospheric river storm tracks tracking algorithm Meteorology. Climatology |
isfreeaccess_bool |
true |
container_title |
Atmosphere |
authorswithroles_txt_mv |
Guangzhi Xu @@aut@@ Xiaohui Ma @@aut@@ Ping Chang @@aut@@ Lin Wang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
657584010 |
id |
DOAJ07675779X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07675779X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412231737.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos11060628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07675779X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangzhi Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric river</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm tracks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tracking algorithm</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">11(2020), 6, p 628</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6, p 628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos11060628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/11/6/628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">6, p 628</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Guangzhi Xu |
spellingShingle |
Guangzhi Xu misc QC851-999 misc atmospheric river misc storm tracks misc tracking algorithm misc Meteorology. Climatology A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
authorStr |
Guangzhi Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)657584010 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC851-999 |
illustrated |
Not Illustrated |
issn |
20734433 |
topic_title |
QC851-999 A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods atmospheric river storm tracks tracking algorithm |
topic |
misc QC851-999 misc atmospheric river misc storm tracks misc tracking algorithm misc Meteorology. Climatology |
topic_unstemmed |
misc QC851-999 misc atmospheric river misc storm tracks misc tracking algorithm misc Meteorology. Climatology |
topic_browse |
misc QC851-999 misc atmospheric river misc storm tracks misc tracking algorithm misc Meteorology. Climatology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Atmosphere |
hierarchy_parent_id |
657584010 |
hierarchy_top_title |
Atmosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)657584010 (DE-600)2605928-9 |
title |
A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
ctrlnum |
(DE-627)DOAJ07675779X (DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1 |
title_full |
A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
author_sort |
Guangzhi Xu |
journal |
Atmosphere |
journalStr |
Atmosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Guangzhi Xu Xiaohui Ma Ping Chang Lin Wang |
container_volume |
11 |
class |
QC851-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Guangzhi Xu |
doi_str_mv |
10.3390/atmos11060628 |
author2-role |
verfasserin |
title_sort |
comparison of northern hemisphere atmospheric rivers detected by a new image-processing based method and magnitude-thresholding based methods |
callnumber |
QC851-999 |
title_auth |
A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
abstract |
A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. |
abstractGer |
A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. |
abstract_unstemmed |
A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6, p 628 |
title_short |
A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods |
url |
https://doi.org/10.3390/atmos11060628 https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1 https://www.mdpi.com/2073-4433/11/6/628 https://doaj.org/toc/2073-4433 |
remote_bool |
true |
author2 |
Xiaohui Ma Ping Chang Lin Wang |
author2Str |
Xiaohui Ma Ping Chang Lin Wang |
ppnlink |
657584010 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/atmos11060628 |
callnumber-a |
QC851-999 |
up_date |
2024-07-03T22:15:08.971Z |
_version_ |
1803597810475466752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07675779X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412231737.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/atmos11060628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07675779X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ476f954b97ce415aa0f0d8c34c8e8cc1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC851-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Guangzhi Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A majority of the existing atmospheric rivers (ARs) detection methods is based on magnitude thresholding on either the integrated water vapor (IWV) or integrated vapor transport (IVT). One disadvantage of such an approach is that the predetermined threshold does not have the flexibility to adjust to the fast changing conditions where ARs are embedded. To address this issue, a new AR detection method is derived from an image-processing algorithm that makes the detection independent of AR magnitude. In this study, we compare the North Pacific and Atlantic ARs tracked by the new detection method and two widely used magnitude thresholding methods in the present day climate. The results show considerable sensitivities of the detected AR number, shape, intensities and their accounted IVT accumulations to different methods. In many aspects, ARs detected by the new method lie between those from the two magnitude thresholding methods, but stand out with a greater number of AR tracks, longer track durations, and stronger AR-related moisture transport in the AR tracks. North Pacific and North Atlantic ARs identified by the new method account for around 100–120 <inline-formula< <math display="inline"< <semantics< <mrow< <mo<×</mo< <mo< </mo< <msup< <mn<10</mn< <mn<3</mn< </msup< </mrow< </semantics< </math< </inline-formula< kg/m/s IVT within the AR track regions, about <inline-formula< <math display="inline"< <semantics< <mrow< <mn<50</mn< <mo<%</mo< </mrow< </semantics< </math< </inline-formula< more than the other two methods. This is primarily due to the fact that the new method captures the strong IVT signals more effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">atmospheric river</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm tracks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tracking algorithm</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Meteorology. Climatology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaohui Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Atmosphere</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">11(2020), 6, p 628</subfield><subfield code="w">(DE-627)657584010</subfield><subfield code="w">(DE-600)2605928-9</subfield><subfield code="x">20734433</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6, p 628</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/atmos11060628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/476f954b97ce415aa0f0d8c34c8e8cc1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4433/11/6/628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4433</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">6, p 628</subfield></datafield></record></collection>
|
score |
7.400079 |