Synergies and prospects for early resolution of the neutrino mass ordering
Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using eith...
Ausführliche Beschreibung
Autor*in: |
Anatael Cabrera [verfasserIn] Yang Han [verfasserIn] Michel Obolensky [verfasserIn] Fabien Cavalier [verfasserIn] João Coelho [verfasserIn] Diana Navas-Nicolás [verfasserIn] Hiroshi Nunokawa [verfasserIn] Laurent Simard [verfasserIn] Jianming Bian [verfasserIn] Nitish Nayak [verfasserIn] Juan Pedro Ochoa-Ricoux [verfasserIn] Bedřich Roskovec [verfasserIn] Pietro Chimenti [verfasserIn] Stefano Dusini [verfasserIn] Mathieu Bongrand [verfasserIn] Rebin Karaparambil [verfasserIn] Victor Lebrin [verfasserIn] Benoit Viaud [verfasserIn] Frederic Yermia [verfasserIn] Lily Asquith [verfasserIn] Thiago J. C. Bezerra [verfasserIn] Jeff Hartnell [verfasserIn] Pierre Lasorak [verfasserIn] Jiajie Ling [verfasserIn] Jiajun Liao [verfasserIn] Hongzhao Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 14 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:14 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-09111-1 |
---|
Katalog-ID: |
DOAJ076936376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ076936376 | ||
003 | DE-627 | ||
005 | 20230503143205.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-09111-1 |2 doi | |
035 | |a (DE-627)DOAJ076936376 | ||
035 | |a (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Anatael Cabrera |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synergies and prospects for early resolution of the neutrino mass ordering |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Yang Han |e verfasserin |4 aut | |
700 | 0 | |a Michel Obolensky |e verfasserin |4 aut | |
700 | 0 | |a Fabien Cavalier |e verfasserin |4 aut | |
700 | 0 | |a João Coelho |e verfasserin |4 aut | |
700 | 0 | |a Diana Navas-Nicolás |e verfasserin |4 aut | |
700 | 0 | |a Hiroshi Nunokawa |e verfasserin |4 aut | |
700 | 0 | |a Laurent Simard |e verfasserin |4 aut | |
700 | 0 | |a Jianming Bian |e verfasserin |4 aut | |
700 | 0 | |a Nitish Nayak |e verfasserin |4 aut | |
700 | 0 | |a Juan Pedro Ochoa-Ricoux |e verfasserin |4 aut | |
700 | 0 | |a Bedřich Roskovec |e verfasserin |4 aut | |
700 | 0 | |a Pietro Chimenti |e verfasserin |4 aut | |
700 | 0 | |a Stefano Dusini |e verfasserin |4 aut | |
700 | 0 | |a Mathieu Bongrand |e verfasserin |4 aut | |
700 | 0 | |a Rebin Karaparambil |e verfasserin |4 aut | |
700 | 0 | |a Victor Lebrin |e verfasserin |4 aut | |
700 | 0 | |a Benoit Viaud |e verfasserin |4 aut | |
700 | 0 | |a Frederic Yermia |e verfasserin |4 aut | |
700 | 0 | |a Lily Asquith |e verfasserin |4 aut | |
700 | 0 | |a Thiago J. C. Bezerra |e verfasserin |4 aut | |
700 | 0 | |a Jeff Hartnell |e verfasserin |4 aut | |
700 | 0 | |a Pierre Lasorak |e verfasserin |4 aut | |
700 | 0 | |a Jiajie Ling |e verfasserin |4 aut | |
700 | 0 | |a Jiajun Liao |e verfasserin |4 aut | |
700 | 0 | |a Hongzhao Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 14 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:14 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-09111-1 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-09111-1 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 14 |
author_variant |
a c ac y h yh m o mo f c fc j c jc d n n dnn h n hn l s ls j b jb n n nn j p o r jpor b r br p c pc s d sd m b mb r k rk v l vl b v bv f y fy l a la t j c b tjcb j h jh p l pl j l jl j l jl h y hy |
---|---|
matchkey_str |
article:20452322:2022----::yegeadrsetfralrsltooteet |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-09111-1 doi (DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e DE-627 ger DE-627 rakwb eng Anatael Cabrera verfasserin aut Synergies and prospects for early resolution of the neutrino mass ordering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. Medicine R Science Q Yang Han verfasserin aut Michel Obolensky verfasserin aut Fabien Cavalier verfasserin aut João Coelho verfasserin aut Diana Navas-Nicolás verfasserin aut Hiroshi Nunokawa verfasserin aut Laurent Simard verfasserin aut Jianming Bian verfasserin aut Nitish Nayak verfasserin aut Juan Pedro Ochoa-Ricoux verfasserin aut Bedřich Roskovec verfasserin aut Pietro Chimenti verfasserin aut Stefano Dusini verfasserin aut Mathieu Bongrand verfasserin aut Rebin Karaparambil verfasserin aut Victor Lebrin verfasserin aut Benoit Viaud verfasserin aut Frederic Yermia verfasserin aut Lily Asquith verfasserin aut Thiago J. C. Bezerra verfasserin aut Jeff Hartnell verfasserin aut Pierre Lasorak verfasserin aut Jiajie Ling verfasserin aut Jiajun Liao verfasserin aut Hongzhao Yu verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 14 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:14 https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e kostenfrei https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 14 |
spelling |
10.1038/s41598-022-09111-1 doi (DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e DE-627 ger DE-627 rakwb eng Anatael Cabrera verfasserin aut Synergies and prospects for early resolution of the neutrino mass ordering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. Medicine R Science Q Yang Han verfasserin aut Michel Obolensky verfasserin aut Fabien Cavalier verfasserin aut João Coelho verfasserin aut Diana Navas-Nicolás verfasserin aut Hiroshi Nunokawa verfasserin aut Laurent Simard verfasserin aut Jianming Bian verfasserin aut Nitish Nayak verfasserin aut Juan Pedro Ochoa-Ricoux verfasserin aut Bedřich Roskovec verfasserin aut Pietro Chimenti verfasserin aut Stefano Dusini verfasserin aut Mathieu Bongrand verfasserin aut Rebin Karaparambil verfasserin aut Victor Lebrin verfasserin aut Benoit Viaud verfasserin aut Frederic Yermia verfasserin aut Lily Asquith verfasserin aut Thiago J. C. Bezerra verfasserin aut Jeff Hartnell verfasserin aut Pierre Lasorak verfasserin aut Jiajie Ling verfasserin aut Jiajun Liao verfasserin aut Hongzhao Yu verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 14 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:14 https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e kostenfrei https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 14 |
allfields_unstemmed |
10.1038/s41598-022-09111-1 doi (DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e DE-627 ger DE-627 rakwb eng Anatael Cabrera verfasserin aut Synergies and prospects for early resolution of the neutrino mass ordering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. Medicine R Science Q Yang Han verfasserin aut Michel Obolensky verfasserin aut Fabien Cavalier verfasserin aut João Coelho verfasserin aut Diana Navas-Nicolás verfasserin aut Hiroshi Nunokawa verfasserin aut Laurent Simard verfasserin aut Jianming Bian verfasserin aut Nitish Nayak verfasserin aut Juan Pedro Ochoa-Ricoux verfasserin aut Bedřich Roskovec verfasserin aut Pietro Chimenti verfasserin aut Stefano Dusini verfasserin aut Mathieu Bongrand verfasserin aut Rebin Karaparambil verfasserin aut Victor Lebrin verfasserin aut Benoit Viaud verfasserin aut Frederic Yermia verfasserin aut Lily Asquith verfasserin aut Thiago J. C. Bezerra verfasserin aut Jeff Hartnell verfasserin aut Pierre Lasorak verfasserin aut Jiajie Ling verfasserin aut Jiajun Liao verfasserin aut Hongzhao Yu verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 14 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:14 https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e kostenfrei https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 14 |
allfieldsGer |
10.1038/s41598-022-09111-1 doi (DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e DE-627 ger DE-627 rakwb eng Anatael Cabrera verfasserin aut Synergies and prospects for early resolution of the neutrino mass ordering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. Medicine R Science Q Yang Han verfasserin aut Michel Obolensky verfasserin aut Fabien Cavalier verfasserin aut João Coelho verfasserin aut Diana Navas-Nicolás verfasserin aut Hiroshi Nunokawa verfasserin aut Laurent Simard verfasserin aut Jianming Bian verfasserin aut Nitish Nayak verfasserin aut Juan Pedro Ochoa-Ricoux verfasserin aut Bedřich Roskovec verfasserin aut Pietro Chimenti verfasserin aut Stefano Dusini verfasserin aut Mathieu Bongrand verfasserin aut Rebin Karaparambil verfasserin aut Victor Lebrin verfasserin aut Benoit Viaud verfasserin aut Frederic Yermia verfasserin aut Lily Asquith verfasserin aut Thiago J. C. Bezerra verfasserin aut Jeff Hartnell verfasserin aut Pierre Lasorak verfasserin aut Jiajie Ling verfasserin aut Jiajun Liao verfasserin aut Hongzhao Yu verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 14 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:14 https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e kostenfrei https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 14 |
allfieldsSound |
10.1038/s41598-022-09111-1 doi (DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e DE-627 ger DE-627 rakwb eng Anatael Cabrera verfasserin aut Synergies and prospects for early resolution of the neutrino mass ordering 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. Medicine R Science Q Yang Han verfasserin aut Michel Obolensky verfasserin aut Fabien Cavalier verfasserin aut João Coelho verfasserin aut Diana Navas-Nicolás verfasserin aut Hiroshi Nunokawa verfasserin aut Laurent Simard verfasserin aut Jianming Bian verfasserin aut Nitish Nayak verfasserin aut Juan Pedro Ochoa-Ricoux verfasserin aut Bedřich Roskovec verfasserin aut Pietro Chimenti verfasserin aut Stefano Dusini verfasserin aut Mathieu Bongrand verfasserin aut Rebin Karaparambil verfasserin aut Victor Lebrin verfasserin aut Benoit Viaud verfasserin aut Frederic Yermia verfasserin aut Lily Asquith verfasserin aut Thiago J. C. Bezerra verfasserin aut Jeff Hartnell verfasserin aut Pierre Lasorak verfasserin aut Jiajie Ling verfasserin aut Jiajun Liao verfasserin aut Hongzhao Yu verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 14 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:14 https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e kostenfrei https://doi.org/10.1038/s41598-022-09111-1 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 14 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 14 volume:12 year:2022 number:1 pages:14 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 14 volume:12 year:2022 number:1 pages:14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Anatael Cabrera @@aut@@ Yang Han @@aut@@ Michel Obolensky @@aut@@ Fabien Cavalier @@aut@@ João Coelho @@aut@@ Diana Navas-Nicolás @@aut@@ Hiroshi Nunokawa @@aut@@ Laurent Simard @@aut@@ Jianming Bian @@aut@@ Nitish Nayak @@aut@@ Juan Pedro Ochoa-Ricoux @@aut@@ Bedřich Roskovec @@aut@@ Pietro Chimenti @@aut@@ Stefano Dusini @@aut@@ Mathieu Bongrand @@aut@@ Rebin Karaparambil @@aut@@ Victor Lebrin @@aut@@ Benoit Viaud @@aut@@ Frederic Yermia @@aut@@ Lily Asquith @@aut@@ Thiago J. C. Bezerra @@aut@@ Jeff Hartnell @@aut@@ Pierre Lasorak @@aut@@ Jiajie Ling @@aut@@ Jiajun Liao @@aut@@ Hongzhao Yu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ076936376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076936376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-09111-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076936376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anatael Cabrera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergies and prospects for early resolution of the neutrino mass ordering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michel Obolensky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabien Cavalier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Coelho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diana Navas-Nicolás</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiroshi Nunokawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laurent Simard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Bian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nitish Nayak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Pedro Ochoa-Ricoux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bedřich Roskovec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pietro Chimenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Dusini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathieu Bongrand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebin Karaparambil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Lebrin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benoit Viaud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frederic Yermia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lily Asquith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thiago J. C. Bezerra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeff Hartnell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Lasorak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiajie Ling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiajun Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongzhao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 14</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-09111-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-09111-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
author |
Anatael Cabrera |
spellingShingle |
Anatael Cabrera misc Medicine misc R misc Science misc Q Synergies and prospects for early resolution of the neutrino mass ordering |
authorStr |
Anatael Cabrera |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Synergies and prospects for early resolution of the neutrino mass ordering |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Synergies and prospects for early resolution of the neutrino mass ordering |
ctrlnum |
(DE-627)DOAJ076936376 (DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e |
title_full |
Synergies and prospects for early resolution of the neutrino mass ordering |
author_sort |
Anatael Cabrera |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
14 |
author_browse |
Anatael Cabrera Yang Han Michel Obolensky Fabien Cavalier João Coelho Diana Navas-Nicolás Hiroshi Nunokawa Laurent Simard Jianming Bian Nitish Nayak Juan Pedro Ochoa-Ricoux Bedřich Roskovec Pietro Chimenti Stefano Dusini Mathieu Bongrand Rebin Karaparambil Victor Lebrin Benoit Viaud Frederic Yermia Lily Asquith Thiago J. C. Bezerra Jeff Hartnell Pierre Lasorak Jiajie Ling Jiajun Liao Hongzhao Yu |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Anatael Cabrera |
doi_str_mv |
10.1038/s41598-022-09111-1 |
author2-role |
verfasserin |
title_sort |
synergies and prospects for early resolution of the neutrino mass ordering |
title_auth |
Synergies and prospects for early resolution of the neutrino mass ordering |
abstract |
Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. |
abstractGer |
Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. |
abstract_unstemmed |
Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Synergies and prospects for early resolution of the neutrino mass ordering |
url |
https://doi.org/10.1038/s41598-022-09111-1 https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Yang Han Michel Obolensky Fabien Cavalier João Coelho Diana Navas-Nicolás Hiroshi Nunokawa Laurent Simard Jianming Bian Nitish Nayak Juan Pedro Ochoa-Ricoux Bedřich Roskovec Pietro Chimenti Stefano Dusini Mathieu Bongrand Rebin Karaparambil Victor Lebrin Benoit Viaud Frederic Yermia Lily Asquith Thiago J. C. Bezerra Jeff Hartnell Pierre Lasorak Jiajie Ling Jiajun Liao Hongzhao Yu |
author2Str |
Yang Han Michel Obolensky Fabien Cavalier João Coelho Diana Navas-Nicolás Hiroshi Nunokawa Laurent Simard Jianming Bian Nitish Nayak Juan Pedro Ochoa-Ricoux Bedřich Roskovec Pietro Chimenti Stefano Dusini Mathieu Bongrand Rebin Karaparambil Victor Lebrin Benoit Viaud Frederic Yermia Lily Asquith Thiago J. C. Bezerra Jeff Hartnell Pierre Lasorak Jiajie Ling Jiajun Liao Hongzhao Yu |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-09111-1 |
up_date |
2024-07-03T23:10:03.027Z |
_version_ |
1803601264572891136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076936376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-09111-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076936376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf2ab209ad5d5463ea6ac2d2d5673881e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anatael Cabrera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synergies and prospects for early resolution of the neutrino mass ordering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $$\Delta m^2_{31}$$ Δ m 31 2 and $$\Delta m^2_{32}$$ Δ m 32 2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB $$\nu$$ ν B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ( $$\ge 5\sigma$$ ≥ 5 σ ) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $$\sim 3\sigma$$ ∼ 3 σ , or LB $$\nu$$ ν B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB $$\nu$$ ν B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $$\Delta m^2_{32}$$ Δ m 32 2 by LB $$\nu$$ ν B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michel Obolensky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabien Cavalier</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Coelho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diana Navas-Nicolás</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiroshi Nunokawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laurent Simard</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Bian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nitish Nayak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Juan Pedro Ochoa-Ricoux</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bedřich Roskovec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pietro Chimenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefano Dusini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathieu Bongrand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rebin Karaparambil</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Victor Lebrin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benoit Viaud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frederic Yermia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lily Asquith</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thiago J. C. Bezerra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jeff Hartnell</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pierre Lasorak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiajie Ling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiajun Liao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongzhao Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 14</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-09111-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f2ab209ad5d5463ea6ac2d2d5673881e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-09111-1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">14</subfield></datafield></record></collection>
|
score |
7.4013395 |