Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform
Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require...
Ausführliche Beschreibung
Autor*in: |
Taylor S. Jones [verfasserIn] Joy B. Winbourne [verfasserIn] Lucy R. Hutyra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecosphere - Wiley, 2016, 11(2020), 6, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2020 ; number:6 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/ecs2.3135 |
---|
Katalog-ID: |
DOAJ076959279 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ076959279 | ||
003 | DE-627 | ||
005 | 20230503072315.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/ecs2.3135 |2 doi | |
035 | |a (DE-627)DOAJ076959279 | ||
035 | |a (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Taylor S. Jones |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. | ||
650 | 4 | |a emerging technology | |
650 | 4 | |a heat pulse | |
650 | 4 | |a low‐cost sensors | |
650 | 4 | |a sap flow | |
650 | 4 | |a sap flux density | |
650 | 4 | |a sensor design | |
653 | 0 | |a Ecology | |
700 | 0 | |a Joy B. Winbourne |e verfasserin |4 aut | |
700 | 0 | |a Lucy R. Hutyra |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecosphere |d Wiley, 2016 |g 11(2020), 6, Seite n/a-n/a |w (DE-627)635133679 |w (DE-600)2572257-8 |x 21508925 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2020 |g number:6 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.3135 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/ecs2.3135 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2150-8925 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2020 |e 6 |h n/a-n/a |
author_variant |
t s j tsj j b w jbw l r h lrh |
---|---|
matchkey_str |
article:21508925:2020----::ibnzdafoaeegntcnlgfrhitgainfafosnocm |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QH |
publishDate |
2020 |
allfields |
10.1002/ecs2.3135 doi (DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 DE-627 ger DE-627 rakwb eng QH540-549.5 Taylor S. Jones verfasserin aut Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology Joy B. Winbourne verfasserin aut Lucy R. Hutyra verfasserin aut In Ecosphere Wiley, 2016 11(2020), 6, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:6 pages:n/a-n/a https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 kostenfrei https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6 n/a-n/a |
spelling |
10.1002/ecs2.3135 doi (DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 DE-627 ger DE-627 rakwb eng QH540-549.5 Taylor S. Jones verfasserin aut Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology Joy B. Winbourne verfasserin aut Lucy R. Hutyra verfasserin aut In Ecosphere Wiley, 2016 11(2020), 6, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:6 pages:n/a-n/a https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 kostenfrei https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6 n/a-n/a |
allfields_unstemmed |
10.1002/ecs2.3135 doi (DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 DE-627 ger DE-627 rakwb eng QH540-549.5 Taylor S. Jones verfasserin aut Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology Joy B. Winbourne verfasserin aut Lucy R. Hutyra verfasserin aut In Ecosphere Wiley, 2016 11(2020), 6, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:6 pages:n/a-n/a https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 kostenfrei https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6 n/a-n/a |
allfieldsGer |
10.1002/ecs2.3135 doi (DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 DE-627 ger DE-627 rakwb eng QH540-549.5 Taylor S. Jones verfasserin aut Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology Joy B. Winbourne verfasserin aut Lucy R. Hutyra verfasserin aut In Ecosphere Wiley, 2016 11(2020), 6, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:6 pages:n/a-n/a https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 kostenfrei https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6 n/a-n/a |
allfieldsSound |
10.1002/ecs2.3135 doi (DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 DE-627 ger DE-627 rakwb eng QH540-549.5 Taylor S. Jones verfasserin aut Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology Joy B. Winbourne verfasserin aut Lucy R. Hutyra verfasserin aut In Ecosphere Wiley, 2016 11(2020), 6, Seite n/a-n/a (DE-627)635133679 (DE-600)2572257-8 21508925 nnns volume:11 year:2020 number:6 pages:n/a-n/a https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 kostenfrei https://doi.org/10.1002/ecs2.3135 kostenfrei https://doaj.org/toc/2150-8925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 AR 11 2020 6 n/a-n/a |
language |
English |
source |
In Ecosphere 11(2020), 6, Seite n/a-n/a volume:11 year:2020 number:6 pages:n/a-n/a |
sourceStr |
In Ecosphere 11(2020), 6, Seite n/a-n/a volume:11 year:2020 number:6 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design Ecology |
isfreeaccess_bool |
true |
container_title |
Ecosphere |
authorswithroles_txt_mv |
Taylor S. Jones @@aut@@ Joy B. Winbourne @@aut@@ Lucy R. Hutyra @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
635133679 |
id |
DOAJ076959279 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076959279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503072315.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.3135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076959279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Taylor S. Jones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emerging technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat pulse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low‐cost sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flux density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor design</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joy B. Winbourne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucy R. Hutyra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">11(2020), 6, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Taylor S. Jones |
spellingShingle |
Taylor S. Jones misc QH540-549.5 misc emerging technology misc heat pulse misc low‐cost sensors misc sap flow misc sap flux density misc sensor design misc Ecology Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
authorStr |
Taylor S. Jones |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)635133679 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
21508925 |
topic_title |
QH540-549.5 Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform emerging technology heat pulse low‐cost sensors sap flow sap flux density sensor design |
topic |
misc QH540-549.5 misc emerging technology misc heat pulse misc low‐cost sensors misc sap flow misc sap flux density misc sensor design misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc emerging technology misc heat pulse misc low‐cost sensors misc sap flow misc sap flux density misc sensor design misc Ecology |
topic_browse |
misc QH540-549.5 misc emerging technology misc heat pulse misc low‐cost sensors misc sap flow misc sap flux density misc sensor design misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecosphere |
hierarchy_parent_id |
635133679 |
hierarchy_top_title |
Ecosphere |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)635133679 (DE-600)2572257-8 |
title |
Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
ctrlnum |
(DE-627)DOAJ076959279 (DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511 |
title_full |
Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
author_sort |
Taylor S. Jones |
journal |
Ecosphere |
journalStr |
Ecosphere |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Taylor S. Jones Joy B. Winbourne Lucy R. Hutyra |
container_volume |
11 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Taylor S. Jones |
doi_str_mv |
10.1002/ecs2.3135 |
author2-role |
verfasserin |
title_sort |
ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
callnumber |
QH540-549.5 |
title_auth |
Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
abstract |
Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. |
abstractGer |
Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. |
abstract_unstemmed |
Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform |
url |
https://doi.org/10.1002/ecs2.3135 https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511 https://doaj.org/toc/2150-8925 |
remote_bool |
true |
author2 |
Joy B. Winbourne Lucy R. Hutyra |
author2Str |
Joy B. Winbourne Lucy R. Hutyra |
ppnlink |
635133679 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/ecs2.3135 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T23:16:32.249Z |
_version_ |
1803601672672378880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ076959279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503072315.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/ecs2.3135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ076959279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbc33e5e44aa84d9ab75b3c6b606cb511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Taylor S. Jones</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ribbonized sap flow: an emerging technology for the integration of sap flow sensor components onto a single platform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Trees play an important role in both the water and carbon cycles. Sensors that measure the flow rate of sap in individual trees provide critical insight into water use dynamics, and these data are vital for the understanding of ecosystem functions. Current sap flux sensors typically require the installation of multiple needle‐like probes into the sapwood of the tree. Despite the scientific value of high‐density measurements, the high cost and complexity of existing methods prevents the deployment of large networks of sensors. This study presents a new sap flow sensor design where all sensor components are on a single integrated circuit board (ribbon) thereby reducing cost and complexity. This system also eliminates misalignment errors, which are a problem inherent in some sap flow sensor designs. The new ribbonized sap flow (RSF) sensor was compared to gravimetric measurements of water flow to quantify the accuracy of the method and the tree wounding response. In a pair of field experiments, we tested the general performance of the sensor design over a growing season, and among several tree species. The laboratory calibration showed that the RSF sensor has similar accuracy and wounding response as traditional three‐probe designs. At a flow rate of 15 cm/h, the sensor underreported rates by 68% with a 19‐d wounding response, compared to other sensor designs, which underreport rates by 20–60%. Collectively, our field experiments show that the RSF sensor can produce reliable field data in a variety of species across full growing seasons. The RSF sensor platform is compact, robust, and versatile. Ribbonized sap flow sensors can be quickly and easily manufactured at low cost, which makes them ideal for the dense network of observations needed for the study of complex forest ecosystems and their response to global change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">emerging technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat pulse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low‐cost sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sap flux density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sensor design</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joy B. Winbourne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lucy R. Hutyra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecosphere</subfield><subfield code="d">Wiley, 2016</subfield><subfield code="g">11(2020), 6, Seite n/a-n/a</subfield><subfield code="w">(DE-627)635133679</subfield><subfield code="w">(DE-600)2572257-8</subfield><subfield code="x">21508925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bc33e5e44aa84d9ab75b3c6b606cb511</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/ecs2.3135</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2150-8925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2020</subfield><subfield code="e">6</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.402261 |