Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau
Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic sus...
Ausführliche Beschreibung
Autor*in: |
Xiaotong Wei [verfasserIn] Hanchao Jiang [verfasserIn] Hongyan Xu [verfasserIn] Jiawei Fan [verfasserIn] Wei Shi [verfasserIn] Qiaoqiao Guo [verfasserIn] Siqi Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 129(2021), Seite 107887- |
---|---|
Übergeordnetes Werk: |
volume:129 ; year:2021 ; pages:107887- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2021.107887 |
---|
Katalog-ID: |
DOAJ077554256 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ077554256 | ||
003 | DE-627 | ||
005 | 20230501191205.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2021.107887 |2 doi | |
035 | |a (DE-627)DOAJ077554256 | ||
035 | |a (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Xiaotong Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. | ||
650 | 4 | |a Ecosystem stability | |
650 | 4 | |a Climate change | |
650 | 4 | |a Tectonic activity | |
650 | 4 | |a Diexi earthquake | |
650 | 4 | |a Lacustrine sediments | |
650 | 4 | |a Eastern Tibetan Plateau | |
653 | 0 | |a Ecology | |
700 | 0 | |a Hanchao Jiang |e verfasserin |4 aut | |
700 | 0 | |a Hongyan Xu |e verfasserin |4 aut | |
700 | 0 | |a Jiawei Fan |e verfasserin |4 aut | |
700 | 0 | |a Wei Shi |e verfasserin |4 aut | |
700 | 0 | |a Qiaoqiao Guo |e verfasserin |4 aut | |
700 | 0 | |a Siqi Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 129(2021), Seite 107887- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:129 |g year:2021 |g pages:107887- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2021.107887 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X21005525 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 129 |j 2021 |h 107887- |
author_variant |
x w xw h j hj h x hx j f jf w s ws q g qg s z sz |
---|---|
matchkey_str |
article:18727034:2021----::epnefeietradolneodtte93ixerhuko |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QH |
publishDate |
2021 |
allfields |
10.1016/j.ecolind.2021.107887 doi (DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiaotong Wei verfasserin aut Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology Hanchao Jiang verfasserin aut Hongyan Xu verfasserin aut Jiawei Fan verfasserin aut Wei Shi verfasserin aut Qiaoqiao Guo verfasserin aut Siqi Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 129(2021), Seite 107887- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:129 year:2021 pages:107887- https://doi.org/10.1016/j.ecolind.2021.107887 kostenfrei https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X21005525 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 129 2021 107887- |
spelling |
10.1016/j.ecolind.2021.107887 doi (DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiaotong Wei verfasserin aut Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology Hanchao Jiang verfasserin aut Hongyan Xu verfasserin aut Jiawei Fan verfasserin aut Wei Shi verfasserin aut Qiaoqiao Guo verfasserin aut Siqi Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 129(2021), Seite 107887- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:129 year:2021 pages:107887- https://doi.org/10.1016/j.ecolind.2021.107887 kostenfrei https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X21005525 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 129 2021 107887- |
allfields_unstemmed |
10.1016/j.ecolind.2021.107887 doi (DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiaotong Wei verfasserin aut Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology Hanchao Jiang verfasserin aut Hongyan Xu verfasserin aut Jiawei Fan verfasserin aut Wei Shi verfasserin aut Qiaoqiao Guo verfasserin aut Siqi Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 129(2021), Seite 107887- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:129 year:2021 pages:107887- https://doi.org/10.1016/j.ecolind.2021.107887 kostenfrei https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X21005525 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 129 2021 107887- |
allfieldsGer |
10.1016/j.ecolind.2021.107887 doi (DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiaotong Wei verfasserin aut Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology Hanchao Jiang verfasserin aut Hongyan Xu verfasserin aut Jiawei Fan verfasserin aut Wei Shi verfasserin aut Qiaoqiao Guo verfasserin aut Siqi Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 129(2021), Seite 107887- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:129 year:2021 pages:107887- https://doi.org/10.1016/j.ecolind.2021.107887 kostenfrei https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X21005525 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 129 2021 107887- |
allfieldsSound |
10.1016/j.ecolind.2021.107887 doi (DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiaotong Wei verfasserin aut Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology Hanchao Jiang verfasserin aut Hongyan Xu verfasserin aut Jiawei Fan verfasserin aut Wei Shi verfasserin aut Qiaoqiao Guo verfasserin aut Siqi Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 129(2021), Seite 107887- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:129 year:2021 pages:107887- https://doi.org/10.1016/j.ecolind.2021.107887 kostenfrei https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X21005525 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 129 2021 107887- |
language |
English |
source |
In Ecological Indicators 129(2021), Seite 107887- volume:129 year:2021 pages:107887- |
sourceStr |
In Ecological Indicators 129(2021), Seite 107887- volume:129 year:2021 pages:107887- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Xiaotong Wei @@aut@@ Hanchao Jiang @@aut@@ Hongyan Xu @@aut@@ Jiawei Fan @@aut@@ Wei Shi @@aut@@ Qiaoqiao Guo @@aut@@ Siqi Zhang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ077554256 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ077554256</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ077554256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaotong Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecosystem stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tectonic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diexi earthquake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lacustrine sediments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eastern Tibetan Plateau</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanchao Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaoqiao Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siqi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">129(2021), Seite 107887-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107887-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2021.107887</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X21005525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2021</subfield><subfield code="h">107887-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiaotong Wei |
spellingShingle |
Xiaotong Wei misc QH540-549.5 misc Ecosystem stability misc Climate change misc Tectonic activity misc Diexi earthquake misc Lacustrine sediments misc Eastern Tibetan Plateau misc Ecology Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
authorStr |
Xiaotong Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau Ecosystem stability Climate change Tectonic activity Diexi earthquake Lacustrine sediments Eastern Tibetan Plateau |
topic |
misc QH540-549.5 misc Ecosystem stability misc Climate change misc Tectonic activity misc Diexi earthquake misc Lacustrine sediments misc Eastern Tibetan Plateau misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc Ecosystem stability misc Climate change misc Tectonic activity misc Diexi earthquake misc Lacustrine sediments misc Eastern Tibetan Plateau misc Ecology |
topic_browse |
misc QH540-549.5 misc Ecosystem stability misc Climate change misc Tectonic activity misc Diexi earthquake misc Lacustrine sediments misc Eastern Tibetan Plateau misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
ctrlnum |
(DE-627)DOAJ077554256 (DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868 |
title_full |
Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
author_sort |
Xiaotong Wei |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
107887 |
author_browse |
Xiaotong Wei Hanchao Jiang Hongyan Xu Jiawei Fan Wei Shi Qiaoqiao Guo Siqi Zhang |
container_volume |
129 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaotong Wei |
doi_str_mv |
10.1016/j.ecolind.2021.107887 |
author2-role |
verfasserin |
title_sort |
response of sedimentary and pollen records to the 1933 diexi earthquake on the eastern tibetan plateau |
callnumber |
QH540-549.5 |
title_auth |
Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
abstract |
Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. |
abstractGer |
Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. |
abstract_unstemmed |
Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau |
url |
https://doi.org/10.1016/j.ecolind.2021.107887 https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868 http://www.sciencedirect.com/science/article/pii/S1470160X21005525 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Hanchao Jiang Hongyan Xu Jiawei Fan Wei Shi Qiaoqiao Guo Siqi Zhang |
author2Str |
Hanchao Jiang Hongyan Xu Jiawei Fan Wei Shi Qiaoqiao Guo Siqi Zhang |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2021.107887 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-04T01:40:21.829Z |
_version_ |
1803610721438662656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ077554256</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501191205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2021.107887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ077554256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcf4618331c3d40efa3a25e498ef1a868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaotong Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vegetation plays an important role in ecosystem stability in tectonically active regions such as the eastern Tibetan Plateau (ETP). To determine the response of mountain ecosystem to climate change and tectonic activity on the ETP, detailed analyses of chronology, pollen, grain size and magnetic susceptibility (SUS) were conducted on a lacustrine sequence from the upper reaches of the Min River. The results show that the lacustrine sediments are mainly transported by wind as those seismogenic dust at Diexi and Lixian. The fine–grained sediments (<20 μm) are background dust that was transported over a long distance, while the coarse-grained sediments (<20 μm) were transported from local to regional dust sources. Intriguingly, the sand fraction (<63 μm) suddenly increased by 10.4%, in response to the Diexi Ms 7.5 earthquake in 1933. The earthquake probably induced many large landslides and provided more sources of coarse particles close to the study area. Also, around 1933, coniferous pollen increased rapidly while herbaceous and aquatic plants decreased significantly, probably due to a marked change in the local hydrological conditions caused by the strong earthquake. The percentage of shrub pollen dominated by Hippophae, remained at a relatively high level, showing these plants to have great significance for ecological stability in tectonically active regions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecosystem stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tectonic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diexi earthquake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lacustrine sediments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eastern Tibetan Plateau</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanchao Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongyan Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiawei Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiaoqiao Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siqi Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">129(2021), Seite 107887-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:129</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:107887-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2021.107887</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cf4618331c3d40efa3a25e498ef1a868</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X21005525</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">129</subfield><subfield code="j">2021</subfield><subfield code="h">107887-</subfield></datafield></record></collection>
|
score |
7.400256 |