Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships
Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotyp...
Ausführliche Beschreibung
Autor*in: |
Tsegaye Getahun [verfasserIn] Kassaye Negash [verfasserIn] Peter L. Chang [verfasserIn] Eric vonWettberg [verfasserIn] Noelia Carrasquilla‐Garcia [verfasserIn] Pooran M. Gaur [verfasserIn] Asnake Fikre [verfasserIn] Teklehaimanot Haileslassie [verfasserIn] Douglas Cook [verfasserIn] Kassahun Tesfaye [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Agrosystems, Geosciences & Environment - Wiley, 2019, 4(2021), 3, Seite n/a-n/a |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2021 ; number:3 ; pages:n/a-n/a |
Links: |
---|
DOI / URN: |
10.1002/agg2.20211 |
---|
Katalog-ID: |
DOAJ07759777X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07759777X | ||
003 | DE-627 | ||
005 | 20230309152640.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/agg2.20211 |2 doi | |
035 | |a (DE-627)DOAJ07759777X | ||
035 | |a (DE-599)DOAJa484bdd547e44fd497326ed39143692b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GE1-350 | |
100 | 0 | |a Tsegaye Getahun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. | ||
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Kassaye Negash |e verfasserin |4 aut | |
700 | 0 | |a Peter L. Chang |e verfasserin |4 aut | |
700 | 0 | |a Eric vonWettberg |e verfasserin |4 aut | |
700 | 0 | |a Noelia Carrasquilla‐Garcia |e verfasserin |4 aut | |
700 | 0 | |a Pooran M. Gaur |e verfasserin |4 aut | |
700 | 0 | |a Asnake Fikre |e verfasserin |4 aut | |
700 | 0 | |a Teklehaimanot Haileslassie |e verfasserin |4 aut | |
700 | 0 | |a Douglas Cook |e verfasserin |4 aut | |
700 | 0 | |a Kassahun Tesfaye |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agrosystems, Geosciences & Environment |d Wiley, 2019 |g 4(2021), 3, Seite n/a-n/a |w (DE-627)1667005227 |w (DE-600)2974531-7 |x 26396696 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2021 |g number:3 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1002/agg2.20211 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a484bdd547e44fd497326ed39143692b |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/agg2.20211 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2639-6696 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2021 |e 3 |h n/a-n/a |
author_variant |
t g tg k n kn p l c plc e v ev n c nc p m g pmg a f af t h th d c dc k t kt |
---|---|
matchkey_str |
article:26396696:2021----::cennohatlrnehoinhcpacesossesetfhnlgclnarmrhlg |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
GE |
publishDate |
2021 |
allfields |
10.1002/agg2.20211 doi (DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b DE-627 ger DE-627 rakwb eng GE1-350 Tsegaye Getahun verfasserin aut Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. Agriculture S Environmental sciences Kassaye Negash verfasserin aut Peter L. Chang verfasserin aut Eric vonWettberg verfasserin aut Noelia Carrasquilla‐Garcia verfasserin aut Pooran M. Gaur verfasserin aut Asnake Fikre verfasserin aut Teklehaimanot Haileslassie verfasserin aut Douglas Cook verfasserin aut Kassahun Tesfaye verfasserin aut In Agrosystems, Geosciences & Environment Wiley, 2019 4(2021), 3, Seite n/a-n/a (DE-627)1667005227 (DE-600)2974531-7 26396696 nnns volume:4 year:2021 number:3 pages:n/a-n/a https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/article/a484bdd547e44fd497326ed39143692b kostenfrei https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/toc/2639-6696 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 3 n/a-n/a |
spelling |
10.1002/agg2.20211 doi (DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b DE-627 ger DE-627 rakwb eng GE1-350 Tsegaye Getahun verfasserin aut Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. Agriculture S Environmental sciences Kassaye Negash verfasserin aut Peter L. Chang verfasserin aut Eric vonWettberg verfasserin aut Noelia Carrasquilla‐Garcia verfasserin aut Pooran M. Gaur verfasserin aut Asnake Fikre verfasserin aut Teklehaimanot Haileslassie verfasserin aut Douglas Cook verfasserin aut Kassahun Tesfaye verfasserin aut In Agrosystems, Geosciences & Environment Wiley, 2019 4(2021), 3, Seite n/a-n/a (DE-627)1667005227 (DE-600)2974531-7 26396696 nnns volume:4 year:2021 number:3 pages:n/a-n/a https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/article/a484bdd547e44fd497326ed39143692b kostenfrei https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/toc/2639-6696 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 3 n/a-n/a |
allfields_unstemmed |
10.1002/agg2.20211 doi (DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b DE-627 ger DE-627 rakwb eng GE1-350 Tsegaye Getahun verfasserin aut Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. Agriculture S Environmental sciences Kassaye Negash verfasserin aut Peter L. Chang verfasserin aut Eric vonWettberg verfasserin aut Noelia Carrasquilla‐Garcia verfasserin aut Pooran M. Gaur verfasserin aut Asnake Fikre verfasserin aut Teklehaimanot Haileslassie verfasserin aut Douglas Cook verfasserin aut Kassahun Tesfaye verfasserin aut In Agrosystems, Geosciences & Environment Wiley, 2019 4(2021), 3, Seite n/a-n/a (DE-627)1667005227 (DE-600)2974531-7 26396696 nnns volume:4 year:2021 number:3 pages:n/a-n/a https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/article/a484bdd547e44fd497326ed39143692b kostenfrei https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/toc/2639-6696 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 3 n/a-n/a |
allfieldsGer |
10.1002/agg2.20211 doi (DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b DE-627 ger DE-627 rakwb eng GE1-350 Tsegaye Getahun verfasserin aut Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. Agriculture S Environmental sciences Kassaye Negash verfasserin aut Peter L. Chang verfasserin aut Eric vonWettberg verfasserin aut Noelia Carrasquilla‐Garcia verfasserin aut Pooran M. Gaur verfasserin aut Asnake Fikre verfasserin aut Teklehaimanot Haileslassie verfasserin aut Douglas Cook verfasserin aut Kassahun Tesfaye verfasserin aut In Agrosystems, Geosciences & Environment Wiley, 2019 4(2021), 3, Seite n/a-n/a (DE-627)1667005227 (DE-600)2974531-7 26396696 nnns volume:4 year:2021 number:3 pages:n/a-n/a https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/article/a484bdd547e44fd497326ed39143692b kostenfrei https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/toc/2639-6696 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 3 n/a-n/a |
allfieldsSound |
10.1002/agg2.20211 doi (DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b DE-627 ger DE-627 rakwb eng GE1-350 Tsegaye Getahun verfasserin aut Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. Agriculture S Environmental sciences Kassaye Negash verfasserin aut Peter L. Chang verfasserin aut Eric vonWettberg verfasserin aut Noelia Carrasquilla‐Garcia verfasserin aut Pooran M. Gaur verfasserin aut Asnake Fikre verfasserin aut Teklehaimanot Haileslassie verfasserin aut Douglas Cook verfasserin aut Kassahun Tesfaye verfasserin aut In Agrosystems, Geosciences & Environment Wiley, 2019 4(2021), 3, Seite n/a-n/a (DE-627)1667005227 (DE-600)2974531-7 26396696 nnns volume:4 year:2021 number:3 pages:n/a-n/a https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/article/a484bdd547e44fd497326ed39143692b kostenfrei https://doi.org/10.1002/agg2.20211 kostenfrei https://doaj.org/toc/2639-6696 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2021 3 n/a-n/a |
language |
English |
source |
In Agrosystems, Geosciences & Environment 4(2021), 3, Seite n/a-n/a volume:4 year:2021 number:3 pages:n/a-n/a |
sourceStr |
In Agrosystems, Geosciences & Environment 4(2021), 3, Seite n/a-n/a volume:4 year:2021 number:3 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Agriculture S Environmental sciences |
isfreeaccess_bool |
true |
container_title |
Agrosystems, Geosciences & Environment |
authorswithroles_txt_mv |
Tsegaye Getahun @@aut@@ Kassaye Negash @@aut@@ Peter L. Chang @@aut@@ Eric vonWettberg @@aut@@ Noelia Carrasquilla‐Garcia @@aut@@ Pooran M. Gaur @@aut@@ Asnake Fikre @@aut@@ Teklehaimanot Haileslassie @@aut@@ Douglas Cook @@aut@@ Kassahun Tesfaye @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1667005227 |
id |
DOAJ07759777X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07759777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309152640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/agg2.20211</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07759777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa484bdd547e44fd497326ed39143692b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tsegaye Getahun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kassaye Negash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter L. Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric vonWettberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Noelia Carrasquilla‐Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pooran M. Gaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asnake Fikre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teklehaimanot Haileslassie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas Cook</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kassahun Tesfaye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agrosystems, Geosciences & Environment</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">4(2021), 3, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1667005227</subfield><subfield code="w">(DE-600)2974531-7</subfield><subfield code="x">26396696</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/agg2.20211</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a484bdd547e44fd497326ed39143692b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/agg2.20211</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2639-6696</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Tsegaye Getahun |
spellingShingle |
Tsegaye Getahun misc GE1-350 misc Agriculture misc S misc Environmental sciences Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
authorStr |
Tsegaye Getahun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1667005227 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GE1-350 |
illustrated |
Not Illustrated |
issn |
26396696 |
topic_title |
GE1-350 Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
topic |
misc GE1-350 misc Agriculture misc S misc Environmental sciences |
topic_unstemmed |
misc GE1-350 misc Agriculture misc S misc Environmental sciences |
topic_browse |
misc GE1-350 misc Agriculture misc S misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agrosystems, Geosciences & Environment |
hierarchy_parent_id |
1667005227 |
hierarchy_top_title |
Agrosystems, Geosciences & Environment |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1667005227 (DE-600)2974531-7 |
title |
Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
ctrlnum |
(DE-627)DOAJ07759777X (DE-599)DOAJa484bdd547e44fd497326ed39143692b |
title_full |
Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
author_sort |
Tsegaye Getahun |
journal |
Agrosystems, Geosciences & Environment |
journalStr |
Agrosystems, Geosciences & Environment |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Tsegaye Getahun Kassaye Negash Peter L. Chang Eric vonWettberg Noelia Carrasquilla‐Garcia Pooran M. Gaur Asnake Fikre Teklehaimanot Haileslassie Douglas Cook Kassahun Tesfaye |
container_volume |
4 |
class |
GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Tsegaye Getahun |
doi_str_mv |
10.1002/agg2.20211 |
author2-role |
verfasserin |
title_sort |
screening of heat‐tolerant ethiopian chickpea accessions: assessment of phenological and agromorphological traits and genomic relationships |
callnumber |
GE1-350 |
title_auth |
Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
abstract |
Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. |
abstractGer |
Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. |
abstract_unstemmed |
Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships |
url |
https://doi.org/10.1002/agg2.20211 https://doaj.org/article/a484bdd547e44fd497326ed39143692b https://doaj.org/toc/2639-6696 |
remote_bool |
true |
author2 |
Kassaye Negash Peter L. Chang Eric vonWettberg Noelia Carrasquilla‐Garcia Pooran M. Gaur Asnake Fikre Teklehaimanot Haileslassie Douglas Cook Kassahun Tesfaye |
author2Str |
Kassaye Negash Peter L. Chang Eric vonWettberg Noelia Carrasquilla‐Garcia Pooran M. Gaur Asnake Fikre Teklehaimanot Haileslassie Douglas Cook Kassahun Tesfaye |
ppnlink |
1667005227 |
callnumber-subject |
GE - Environmental Sciences |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/agg2.20211 |
callnumber-a |
GE1-350 |
up_date |
2024-07-04T01:49:55.941Z |
_version_ |
1803611323440824321 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07759777X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309152640.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/agg2.20211</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07759777X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa484bdd547e44fd497326ed39143692b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tsegaye Getahun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Screening of heat‐tolerant Ethiopian chickpea accessions: Assessment of phenological and agromorphological traits and genomic relationships</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A major agronomic challenge for chickpea (Cicer arietinum L.) production is temperatures above 35 °C, which causes reduced fertility and seed development. This study was aimed at assessing the phenotypic variation of chickpea genotypes under variable heat stress conditions. Chickpea genotypes were grown in heat‐stressed locations in both Ethiopia and India to assess phenotypic variation for heat tolerance. In addition, genomic relationships among the genotypes were assessed using genome‐wide single nucleotide polymorphism (SNP) markers. A total of 121 genotypes were assessed at three field sites in Ethiopia, under heat stress and nonstress conditions, and 57 genotypes were assessed under high‐heat‐stress conditions at the International Crops Research Institute for the Semiarid Tropics (ICRISAT) in Hyderabad, India. Data for five phenological and seven agromorphological traits were recorded. The results showed that the chickpea genotypes were severely affected by excessive heat at Hyderabad as compared with those planted under non‐heat‐stress conditions in Debre Zeit, Ethiopia. At extremely high temperatures, chickpea plants exhibited reduced floral initiation, arrested seed and pod development, shortened life cycles, and reduced plant height, seed size, grain yield, and yield‐related traits. Across stressed and nonstressed environments, there were highly significant differences among the genotypes for most of the traits (ANOVA, P ≤ .001). Under heat‐stressed environments, DZ‐Cr‐0034 was found to be a highly tolerant, whereas DZ‐Cr‐0026 was found to be a highly sensitive genotype. Genetic relationships among the genotypes were determined using 5,722 SNPs, revealing a single group of Ethiopian genotypes with small number of cultivars showing introgression from Middle Eastern germplasm. This study clearly demonstrated that there is genetic variability in chickpea for heat tolerance that can be harnessed to meet expected shifts towards warmer climatic conditions.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kassaye Negash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter L. Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eric vonWettberg</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Noelia Carrasquilla‐Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pooran M. Gaur</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asnake Fikre</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teklehaimanot Haileslassie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Douglas Cook</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kassahun Tesfaye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agrosystems, Geosciences & Environment</subfield><subfield code="d">Wiley, 2019</subfield><subfield code="g">4(2021), 3, Seite n/a-n/a</subfield><subfield code="w">(DE-627)1667005227</subfield><subfield code="w">(DE-600)2974531-7</subfield><subfield code="x">26396696</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/agg2.20211</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a484bdd547e44fd497326ed39143692b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/agg2.20211</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2639-6696</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4016895 |