Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings ac...
Ausführliche Beschreibung
Autor*in: |
Thomas P. DeRamus [verfasserIn] Rajesh K. Kana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: NeuroImage: Clinical - Elsevier, 2015, 7(2015), C, Seite 525-536 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2015 ; number:C ; pages:525-536 |
Links: |
---|
DOI / URN: |
10.1016/j.nicl.2014.11.004 |
---|
Katalog-ID: |
DOAJ07764476X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07764476X | ||
003 | DE-627 | ||
005 | 20230502151408.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nicl.2014.11.004 |2 doi | |
035 | |a (DE-627)DOAJ07764476X | ||
035 | |a (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
050 | 0 | |a RC346-429 | |
100 | 0 | |a Thomas P. DeRamus |e verfasserin |4 aut | |
245 | 1 | 0 | |a Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. | ||
650 | 4 | |a Autism spectrum disorder | |
650 | 4 | |a Voxel-based morphometry | |
650 | 4 | |a Anatomical likelihood estimation | |
650 | 4 | |a Grey matter | |
650 | 4 | |a White matter | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Neurology. Diseases of the nervous system | |
700 | 0 | |a Rajesh K. Kana |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t NeuroImage: Clinical |d Elsevier, 2015 |g 7(2015), C, Seite 525-536 |w (DE-627)735358869 |w (DE-600)2701571-3 |x 22131582 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2015 |g number:C |g pages:525-536 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nicl.2014.11.004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2213158214001685 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2213-1582 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2015 |e C |h 525-536 |
author_variant |
t p d tpd r k k rkk |
---|---|
matchkey_str |
article:22131582:2015----::ntmclieiodsiaineanlssfrynwieatrnmlei |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
R |
publishDate |
2015 |
allfields |
10.1016/j.nicl.2014.11.004 doi (DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Thomas P. DeRamus verfasserin aut Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Rajesh K. Kana verfasserin aut In NeuroImage: Clinical Elsevier, 2015 7(2015), C, Seite 525-536 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:7 year:2015 number:C pages:525-536 https://doi.org/10.1016/j.nicl.2014.11.004 kostenfrei https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158214001685 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2015 C 525-536 |
spelling |
10.1016/j.nicl.2014.11.004 doi (DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Thomas P. DeRamus verfasserin aut Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Rajesh K. Kana verfasserin aut In NeuroImage: Clinical Elsevier, 2015 7(2015), C, Seite 525-536 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:7 year:2015 number:C pages:525-536 https://doi.org/10.1016/j.nicl.2014.11.004 kostenfrei https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158214001685 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2015 C 525-536 |
allfields_unstemmed |
10.1016/j.nicl.2014.11.004 doi (DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Thomas P. DeRamus verfasserin aut Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Rajesh K. Kana verfasserin aut In NeuroImage: Clinical Elsevier, 2015 7(2015), C, Seite 525-536 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:7 year:2015 number:C pages:525-536 https://doi.org/10.1016/j.nicl.2014.11.004 kostenfrei https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158214001685 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2015 C 525-536 |
allfieldsGer |
10.1016/j.nicl.2014.11.004 doi (DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Thomas P. DeRamus verfasserin aut Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Rajesh K. Kana verfasserin aut In NeuroImage: Clinical Elsevier, 2015 7(2015), C, Seite 525-536 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:7 year:2015 number:C pages:525-536 https://doi.org/10.1016/j.nicl.2014.11.004 kostenfrei https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158214001685 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2015 C 525-536 |
allfieldsSound |
10.1016/j.nicl.2014.11.004 doi (DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 DE-627 ger DE-627 rakwb eng R858-859.7 RC346-429 Thomas P. DeRamus verfasserin aut Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system Rajesh K. Kana verfasserin aut In NeuroImage: Clinical Elsevier, 2015 7(2015), C, Seite 525-536 (DE-627)735358869 (DE-600)2701571-3 22131582 nnns volume:7 year:2015 number:C pages:525-536 https://doi.org/10.1016/j.nicl.2014.11.004 kostenfrei https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 kostenfrei http://www.sciencedirect.com/science/article/pii/S2213158214001685 kostenfrei https://doaj.org/toc/2213-1582 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 7 2015 C 525-536 |
language |
English |
source |
In NeuroImage: Clinical 7(2015), C, Seite 525-536 volume:7 year:2015 number:C pages:525-536 |
sourceStr |
In NeuroImage: Clinical 7(2015), C, Seite 525-536 volume:7 year:2015 number:C pages:525-536 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter Computer applications to medicine. Medical informatics Neurology. Diseases of the nervous system |
isfreeaccess_bool |
true |
container_title |
NeuroImage: Clinical |
authorswithroles_txt_mv |
Thomas P. DeRamus @@aut@@ Rajesh K. Kana @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
735358869 |
id |
DOAJ07764476X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07764476X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502151408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2014.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07764476X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas P. DeRamus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autism spectrum disorder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voxel-based morphometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anatomical likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grey matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">White matter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajesh K. Kana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">7(2015), C, Seite 525-536</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:C</subfield><subfield code="g">pages:525-536</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2014.11.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158214001685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2015</subfield><subfield code="e">C</subfield><subfield code="h">525-536</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Thomas P. DeRamus |
spellingShingle |
Thomas P. DeRamus misc R858-859.7 misc RC346-429 misc Autism spectrum disorder misc Voxel-based morphometry misc Anatomical likelihood estimation misc Grey matter misc White matter misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
authorStr |
Thomas P. DeRamus |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735358869 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
22131582 |
topic_title |
R858-859.7 RC346-429 Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders Autism spectrum disorder Voxel-based morphometry Anatomical likelihood estimation Grey matter White matter |
topic |
misc R858-859.7 misc RC346-429 misc Autism spectrum disorder misc Voxel-based morphometry misc Anatomical likelihood estimation misc Grey matter misc White matter misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_unstemmed |
misc R858-859.7 misc RC346-429 misc Autism spectrum disorder misc Voxel-based morphometry misc Anatomical likelihood estimation misc Grey matter misc White matter misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
topic_browse |
misc R858-859.7 misc RC346-429 misc Autism spectrum disorder misc Voxel-based morphometry misc Anatomical likelihood estimation misc Grey matter misc White matter misc Computer applications to medicine. Medical informatics misc Neurology. Diseases of the nervous system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
NeuroImage: Clinical |
hierarchy_parent_id |
735358869 |
hierarchy_top_title |
NeuroImage: Clinical |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735358869 (DE-600)2701571-3 |
title |
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
ctrlnum |
(DE-627)DOAJ07764476X (DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434 |
title_full |
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
author_sort |
Thomas P. DeRamus |
journal |
NeuroImage: Clinical |
journalStr |
NeuroImage: Clinical |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
525 |
author_browse |
Thomas P. DeRamus Rajesh K. Kana |
container_volume |
7 |
class |
R858-859.7 RC346-429 |
format_se |
Elektronische Aufsätze |
author-letter |
Thomas P. DeRamus |
doi_str_mv |
10.1016/j.nicl.2014.11.004 |
author2-role |
verfasserin |
title_sort |
anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
callnumber |
R858-859.7 |
title_auth |
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
abstract |
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. |
abstractGer |
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. |
abstract_unstemmed |
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
C |
title_short |
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders |
url |
https://doi.org/10.1016/j.nicl.2014.11.004 https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434 http://www.sciencedirect.com/science/article/pii/S2213158214001685 https://doaj.org/toc/2213-1582 |
remote_bool |
true |
author2 |
Rajesh K. Kana |
author2Str |
Rajesh K. Kana |
ppnlink |
735358869 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nicl.2014.11.004 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-04T02:00:19.651Z |
_version_ |
1803611977447112704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07764476X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502151408.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nicl.2014.11.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07764476X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5a6b2c02c9d846db99b4b64ec3eff434</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC346-429</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Thomas P. DeRamus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal–temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autism spectrum disorder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voxel-based morphometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anatomical likelihood estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grey matter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">White matter</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurology. Diseases of the nervous system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rajesh K. Kana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">NeuroImage: Clinical</subfield><subfield code="d">Elsevier, 2015</subfield><subfield code="g">7(2015), C, Seite 525-536</subfield><subfield code="w">(DE-627)735358869</subfield><subfield code="w">(DE-600)2701571-3</subfield><subfield code="x">22131582</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:C</subfield><subfield code="g">pages:525-536</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nicl.2014.11.004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5a6b2c02c9d846db99b4b64ec3eff434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2213158214001685</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2213-1582</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2015</subfield><subfield code="e">C</subfield><subfield code="h">525-536</subfield></datafield></record></collection>
|
score |
7.400755 |