Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana
Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morpholog...
Ausführliche Beschreibung
Autor*in: |
Niti B. Mishra [verfasserIn] Kelley A. Crews [verfasserIn] Jennifer A. Miller [verfasserIn] Thoralf Meyer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Land - MDPI AG, 2013, 4(2015), 1, Seite 197-215 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2015 ; number:1 ; pages:197-215 |
Links: |
---|
DOI / URN: |
10.3390/land4010197 |
---|
Katalog-ID: |
DOAJ077746988 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ077746988 | ||
003 | DE-627 | ||
005 | 20230309153434.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/land4010197 |2 doi | |
035 | |a (DE-627)DOAJ077746988 | ||
035 | |a (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Niti B. Mishra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. | ||
650 | 4 | |a semi-arid savanna | |
650 | 4 | |a vegetation morphology | |
650 | 4 | |a NDVI | |
650 | 4 | |a MODIS time-series | |
650 | 4 | |a random forest | |
650 | 4 | |a spatial heterogeneity | |
650 | 4 | |a CKGR | |
650 | 4 | |a Kalahari | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Kelley A. Crews |e verfasserin |4 aut | |
700 | 0 | |a Jennifer A. Miller |e verfasserin |4 aut | |
700 | 0 | |a Thoralf Meyer |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Land |d MDPI AG, 2013 |g 4(2015), 1, Seite 197-215 |w (DE-627)72649500X |w (DE-600)2682955-1 |x 2073445X |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2015 |g number:1 |g pages:197-215 |
856 | 4 | 0 | |u https://doi.org/10.3390/land4010197 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/2073-445X/4/1/197 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-445X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2015 |e 1 |h 197-215 |
author_variant |
n b m nbm k a c kac j a m jam t m tm |
---|---|
matchkey_str |
article:2073445X:2015----::apnvgttomrhlgtpsnotenfiaaanuigoitmsremtiscs |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.3390/land4010197 doi (DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 DE-627 ger DE-627 rakwb eng Niti B. Mishra verfasserin aut Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S Kelley A. Crews verfasserin aut Jennifer A. Miller verfasserin aut Thoralf Meyer verfasserin aut In Land MDPI AG, 2013 4(2015), 1, Seite 197-215 (DE-627)72649500X (DE-600)2682955-1 2073445X nnns volume:4 year:2015 number:1 pages:197-215 https://doi.org/10.3390/land4010197 kostenfrei https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 kostenfrei http://www.mdpi.com/2073-445X/4/1/197 kostenfrei https://doaj.org/toc/2073-445X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 4 2015 1 197-215 |
spelling |
10.3390/land4010197 doi (DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 DE-627 ger DE-627 rakwb eng Niti B. Mishra verfasserin aut Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S Kelley A. Crews verfasserin aut Jennifer A. Miller verfasserin aut Thoralf Meyer verfasserin aut In Land MDPI AG, 2013 4(2015), 1, Seite 197-215 (DE-627)72649500X (DE-600)2682955-1 2073445X nnns volume:4 year:2015 number:1 pages:197-215 https://doi.org/10.3390/land4010197 kostenfrei https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 kostenfrei http://www.mdpi.com/2073-445X/4/1/197 kostenfrei https://doaj.org/toc/2073-445X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 4 2015 1 197-215 |
allfields_unstemmed |
10.3390/land4010197 doi (DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 DE-627 ger DE-627 rakwb eng Niti B. Mishra verfasserin aut Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S Kelley A. Crews verfasserin aut Jennifer A. Miller verfasserin aut Thoralf Meyer verfasserin aut In Land MDPI AG, 2013 4(2015), 1, Seite 197-215 (DE-627)72649500X (DE-600)2682955-1 2073445X nnns volume:4 year:2015 number:1 pages:197-215 https://doi.org/10.3390/land4010197 kostenfrei https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 kostenfrei http://www.mdpi.com/2073-445X/4/1/197 kostenfrei https://doaj.org/toc/2073-445X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 4 2015 1 197-215 |
allfieldsGer |
10.3390/land4010197 doi (DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 DE-627 ger DE-627 rakwb eng Niti B. Mishra verfasserin aut Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S Kelley A. Crews verfasserin aut Jennifer A. Miller verfasserin aut Thoralf Meyer verfasserin aut In Land MDPI AG, 2013 4(2015), 1, Seite 197-215 (DE-627)72649500X (DE-600)2682955-1 2073445X nnns volume:4 year:2015 number:1 pages:197-215 https://doi.org/10.3390/land4010197 kostenfrei https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 kostenfrei http://www.mdpi.com/2073-445X/4/1/197 kostenfrei https://doaj.org/toc/2073-445X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 4 2015 1 197-215 |
allfieldsSound |
10.3390/land4010197 doi (DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 DE-627 ger DE-627 rakwb eng Niti B. Mishra verfasserin aut Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S Kelley A. Crews verfasserin aut Jennifer A. Miller verfasserin aut Thoralf Meyer verfasserin aut In Land MDPI AG, 2013 4(2015), 1, Seite 197-215 (DE-627)72649500X (DE-600)2682955-1 2073445X nnns volume:4 year:2015 number:1 pages:197-215 https://doi.org/10.3390/land4010197 kostenfrei https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 kostenfrei http://www.mdpi.com/2073-445X/4/1/197 kostenfrei https://doaj.org/toc/2073-445X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 4 2015 1 197-215 |
language |
English |
source |
In Land 4(2015), 1, Seite 197-215 volume:4 year:2015 number:1 pages:197-215 |
sourceStr |
In Land 4(2015), 1, Seite 197-215 volume:4 year:2015 number:1 pages:197-215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari Agriculture S |
isfreeaccess_bool |
true |
container_title |
Land |
authorswithroles_txt_mv |
Niti B. Mishra @@aut@@ Kelley A. Crews @@aut@@ Jennifer A. Miller @@aut@@ Thoralf Meyer @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
72649500X |
id |
DOAJ077746988 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ077746988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309153434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/land4010197</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ077746988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Niti B. Mishra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-arid savanna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS time-series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CKGR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalahari</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kelley A. Crews</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer A. Miller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thoralf Meyer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Land</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">4(2015), 1, Seite 197-215</subfield><subfield code="w">(DE-627)72649500X</subfield><subfield code="w">(DE-600)2682955-1</subfield><subfield code="x">2073445X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:197-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/land4010197</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-445X/4/1/197</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-445X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">197-215</subfield></datafield></record></collection>
|
author |
Niti B. Mishra |
spellingShingle |
Niti B. Mishra misc semi-arid savanna misc vegetation morphology misc NDVI misc MODIS time-series misc random forest misc spatial heterogeneity misc CKGR misc Kalahari misc Agriculture misc S Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
authorStr |
Niti B. Mishra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)72649500X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2073445X |
topic_title |
Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana semi-arid savanna vegetation morphology NDVI MODIS time-series random forest spatial heterogeneity CKGR Kalahari |
topic |
misc semi-arid savanna misc vegetation morphology misc NDVI misc MODIS time-series misc random forest misc spatial heterogeneity misc CKGR misc Kalahari misc Agriculture misc S |
topic_unstemmed |
misc semi-arid savanna misc vegetation morphology misc NDVI misc MODIS time-series misc random forest misc spatial heterogeneity misc CKGR misc Kalahari misc Agriculture misc S |
topic_browse |
misc semi-arid savanna misc vegetation morphology misc NDVI misc MODIS time-series misc random forest misc spatial heterogeneity misc CKGR misc Kalahari misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Land |
hierarchy_parent_id |
72649500X |
hierarchy_top_title |
Land |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)72649500X (DE-600)2682955-1 |
title |
Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
ctrlnum |
(DE-627)DOAJ077746988 (DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9 |
title_full |
Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
author_sort |
Niti B. Mishra |
journal |
Land |
journalStr |
Land |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
197 |
author_browse |
Niti B. Mishra Kelley A. Crews Jennifer A. Miller Thoralf Meyer |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Niti B. Mishra |
doi_str_mv |
10.3390/land4010197 |
author2-role |
verfasserin |
title_sort |
mapping vegetation morphology types in southern africa savanna using modis time-series metrics: a case study of central kalahari, botswana |
title_auth |
Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
abstract |
Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. |
abstractGer |
Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. |
abstract_unstemmed |
Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana |
url |
https://doi.org/10.3390/land4010197 https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9 http://www.mdpi.com/2073-445X/4/1/197 https://doaj.org/toc/2073-445X |
remote_bool |
true |
author2 |
Kelley A. Crews Jennifer A. Miller Thoralf Meyer |
author2Str |
Kelley A. Crews Jennifer A. Miller Thoralf Meyer |
ppnlink |
72649500X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/land4010197 |
up_date |
2024-07-03T13:52:23.862Z |
_version_ |
1803566180068229120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ077746988</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309153434.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/land4010197</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ077746988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec22f7bcd0414dac8eeb2d957621c6e9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Niti B. Mishra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping Vegetation Morphology Types in Southern Africa Savanna Using MODIS Time-Series Metrics: A Case Study of Central Kalahari, Botswana</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Savanna ecosystems are geographically extensive and both ecologically and economically important; they therefore require monitoring over large spatial extents. There are, in particular, large areas within southern Africa savanna ecosystems that lack consistent geospatial data on vegetation morphological properties, which is a prerequisite for biodiversity conservation and sustainable management of ecological resources. Given the challenges involved in distinguishing and mapping savanna vegetation assemblages using remote sensing, the objective of this study was to develop a vegetation morphology map for the largest protected area in Africa, the central Kalahari. Six vegetation morphology classes were developed and sample training/validation pixels were selected for each class by analyzing extensive in situ data on vegetation structural and functional properties, in combination with existing ancillary data and coarse scale land cover products. The classification feature set consisted of annual and intra annual matrices derived from 14 years of satellite-derived vegetation indices images, and final classification was achieved using an ensemble tree based classifier. All vegetation morphology classes were mapped with high accuracy and the overall classification accuracy was 91.9%. Besides filling the geospatial data gap for the central Kalahari area, this vegetation morphology map is expected to serve as a critical input to ecological studies focusing on habitat use by wildlife and the efficacy of game fencing, as well as contributing to sustainable ecosystem management in the central Kalahari.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-arid savanna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetation morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDVI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MODIS time-series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial heterogeneity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CKGR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalahari</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kelley A. Crews</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jennifer A. Miller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thoralf Meyer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Land</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">4(2015), 1, Seite 197-215</subfield><subfield code="w">(DE-627)72649500X</subfield><subfield code="w">(DE-600)2682955-1</subfield><subfield code="x">2073445X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:197-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/land4010197</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec22f7bcd0414dac8eeb2d957621c6e9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/2073-445X/4/1/197</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-445X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">197-215</subfield></datafield></record></collection>
|
score |
7.4009247 |