Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling
For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discuss...
Ausführliche Beschreibung
Autor*in: |
Li-Na Zhang [verfasserIn] Feng-Chen Li [verfasserIn] Xiao-Yong Wang [verfasserIn] Peng-Fei Cui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Übergeordnetes Werk: |
In: Advances in Materials Science and Engineering - Hindawi Limited, 2009, (2017) |
---|---|
Übergeordnetes Werk: |
year:2017 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1155/2017/6948081 |
---|
Katalog-ID: |
DOAJ078382939 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078382939 | ||
003 | DE-627 | ||
005 | 20230502093837.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2017/6948081 |2 doi | |
035 | |a (DE-627)DOAJ078382939 | ||
035 | |a (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Li-Na Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. | ||
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Feng-Chen Li |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Yong Wang |e verfasserin |4 aut | |
700 | 0 | |a Peng-Fei Cui |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Advances in Materials Science and Engineering |d Hindawi Limited, 2009 |g (2017) |w (DE-627)602540895 |w (DE-600)2501025-6 |x 16878442 |7 nnns |
773 | 1 | 8 | |g year:2017 |
856 | 4 | 0 | |u https://doi.org/10.1155/2017/6948081 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2017/6948081 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-8434 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-8442 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2017 |
author_variant |
l n z lnz f c l fcl x y w xyw p f c pfc |
---|---|
matchkey_str |
article:16878442:2017----::hoeiaadueiaaayio1miprmtirsnneftydalc |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
TA |
publishDate |
2017 |
allfields |
10.1155/2017/6948081 doi (DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f DE-627 ger DE-627 rakwb eng TA401-492 Li-Na Zhang verfasserin aut Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. Materials of engineering and construction. Mechanics of materials Feng-Chen Li verfasserin aut Xiao-Yong Wang verfasserin aut Peng-Fei Cui verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2017) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2017 https://doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f kostenfrei http://dx.doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
spelling |
10.1155/2017/6948081 doi (DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f DE-627 ger DE-627 rakwb eng TA401-492 Li-Na Zhang verfasserin aut Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. Materials of engineering and construction. Mechanics of materials Feng-Chen Li verfasserin aut Xiao-Yong Wang verfasserin aut Peng-Fei Cui verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2017) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2017 https://doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f kostenfrei http://dx.doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfields_unstemmed |
10.1155/2017/6948081 doi (DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f DE-627 ger DE-627 rakwb eng TA401-492 Li-Na Zhang verfasserin aut Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. Materials of engineering and construction. Mechanics of materials Feng-Chen Li verfasserin aut Xiao-Yong Wang verfasserin aut Peng-Fei Cui verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2017) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2017 https://doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f kostenfrei http://dx.doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfieldsGer |
10.1155/2017/6948081 doi (DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f DE-627 ger DE-627 rakwb eng TA401-492 Li-Na Zhang verfasserin aut Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. Materials of engineering and construction. Mechanics of materials Feng-Chen Li verfasserin aut Xiao-Yong Wang verfasserin aut Peng-Fei Cui verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2017) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2017 https://doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f kostenfrei http://dx.doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
allfieldsSound |
10.1155/2017/6948081 doi (DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f DE-627 ger DE-627 rakwb eng TA401-492 Li-Na Zhang verfasserin aut Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. Materials of engineering and construction. Mechanics of materials Feng-Chen Li verfasserin aut Xiao-Yong Wang verfasserin aut Peng-Fei Cui verfasserin aut In Advances in Materials Science and Engineering Hindawi Limited, 2009 (2017) (DE-627)602540895 (DE-600)2501025-6 16878442 nnns year:2017 https://doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f kostenfrei http://dx.doi.org/10.1155/2017/6948081 kostenfrei https://doaj.org/toc/1687-8434 Journal toc kostenfrei https://doaj.org/toc/1687-8442 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2017 |
language |
English |
source |
In Advances in Materials Science and Engineering (2017) year:2017 |
sourceStr |
In Advances in Materials Science and Engineering (2017) year:2017 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Advances in Materials Science and Engineering |
authorswithroles_txt_mv |
Li-Na Zhang @@aut@@ Feng-Chen Li @@aut@@ Xiao-Yong Wang @@aut@@ Peng-Fei Cui @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
602540895 |
id |
DOAJ078382939 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078382939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502093837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2017/6948081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078382939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li-Na Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng-Chen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Yong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng-Fei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Materials Science and Engineering</subfield><subfield code="d">Hindawi Limited, 2009</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)602540895</subfield><subfield code="w">(DE-600)2501025-6</subfield><subfield code="x">16878442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2017/6948081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2017/6948081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8434</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8442</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Li-Na Zhang |
spellingShingle |
Li-Na Zhang misc TA401-492 misc Materials of engineering and construction. Mechanics of materials Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
authorStr |
Li-Na Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)602540895 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
16878442 |
topic_title |
TA401-492 Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
topic |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in Materials Science and Engineering |
hierarchy_parent_id |
602540895 |
hierarchy_top_title |
Advances in Materials Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)602540895 (DE-600)2501025-6 |
title |
Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
ctrlnum |
(DE-627)DOAJ078382939 (DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f |
title_full |
Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
author_sort |
Li-Na Zhang |
journal |
Advances in Materials Science and Engineering |
journalStr |
Advances in Materials Science and Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Li-Na Zhang Feng-Chen Li Xiao-Yong Wang Peng-Fei Cui |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Li-Na Zhang |
doi_str_mv |
10.1155/2017/6948081 |
author2-role |
verfasserin |
title_sort |
theoretical and numerical analysis of 1 : 1 main parametric resonance of stayed cable considering cable-beam coupling |
callnumber |
TA401-492 |
title_auth |
Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
abstract |
For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. |
abstractGer |
For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. |
abstract_unstemmed |
For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling |
url |
https://doi.org/10.1155/2017/6948081 https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f http://dx.doi.org/10.1155/2017/6948081 https://doaj.org/toc/1687-8434 https://doaj.org/toc/1687-8442 |
remote_bool |
true |
author2 |
Feng-Chen Li Xiao-Yong Wang Peng-Fei Cui |
author2Str |
Feng-Chen Li Xiao-Yong Wang Peng-Fei Cui |
ppnlink |
602540895 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2017/6948081 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T17:38:41.460Z |
_version_ |
1803580417205338112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078382939</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502093837.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2017/6948081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078382939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbbbded91688b40c2ae4d1600d9afc28f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Li-Na Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical and Numerical Analysis of 1 : 1 Main Parametric Resonance of Stayed Cable Considering Cable-Beam Coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For the 1 : 1 main parametric resonances problems of cable-bridge coupling vibration, a main parametric resonances model considering cable-beam coupling is developed and dimensionless parametric resonances differential equations are derived. The main parametric resonances characteristics are discussed by means of multiscale approximation solution methods. Using an actual cable of cable-stayed bridge project for research object, numerical simulation analysis under a variety of conditions is illustrated. The results show that when the coupling system causes 1 : 1 parametric resonance, nonlinear main parametric resonances in response are unrelated to initial displacement of the cable, but with the increase of deck beam end vertical initial displacement increases, accompanied with a considerable “beat” vibration. When the vertical initial displacement of deck beam end is 10−6 m order of magnitude or even smaller, “beat” vibration phenomenon of cable and beam appears. Displacement amplitude of the cable is small and considerable amplitude vibration may not occur at this time, only making a slight stable “beat” vibration in the vicinity of the equilibrium position, which is different from 2 : 1 parametric resonance condition of cable-bridge coupling system. Therefore, it is necessary to limit the initial displacement excitation amplitude of beam end and prevent the occurrence of amplitude main parametric excitation resonances.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng-Chen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Yong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng-Fei Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Advances in Materials Science and Engineering</subfield><subfield code="d">Hindawi Limited, 2009</subfield><subfield code="g">(2017)</subfield><subfield code="w">(DE-627)602540895</subfield><subfield code="w">(DE-600)2501025-6</subfield><subfield code="x">16878442</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2017/6948081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bbbded91688b40c2ae4d1600d9afc28f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2017/6948081</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8434</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-8442</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2017</subfield></datafield></record></collection>
|
score |
7.399441 |