Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept
Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower...
Ausführliche Beschreibung
Autor*in: |
Lintao Ding [verfasserIn] Chenguang Shi [verfasserIn] Wei Qiu [verfasserIn] Jianjiang Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
low probability of intercept (lpi) |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 20(2020), 5, p 1269 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:5, p 1269 |
Links: |
---|
DOI / URN: |
10.3390/s20051269 |
---|
Katalog-ID: |
DOAJ07871530X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07871530X | ||
003 | DE-627 | ||
005 | 20230503144732.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s20051269 |2 doi | |
035 | |a (DE-627)DOAJ07871530X | ||
035 | |a (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Lintao Ding |e verfasserin |4 aut | |
245 | 1 | 0 | |a Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. | ||
650 | 4 | |a low probability of intercept (lpi) | |
650 | 4 | |a bayesian cramer–rao lower bound (bcrlb) | |
650 | 4 | |a multi-target tracking | |
650 | 4 | |a radar network | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Chenguang Shi |e verfasserin |4 aut | |
700 | 0 | |a Wei Qiu |e verfasserin |4 aut | |
700 | 0 | |a Jianjiang Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 20(2020), 5, p 1269 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:5, p 1269 |
856 | 4 | 0 | |u https://doi.org/10.3390/s20051269 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/20/5/1269 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 5, p 1269 |
author_variant |
l d ld c s cs w q wq j z jz |
---|---|
matchkey_str |
article:14248220:2020----::ondelienbnwdhpiiainomliagtrcignaantokae |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/s20051269 doi (DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f DE-627 ger DE-627 rakwb eng TP1-1185 Lintao Ding verfasserin aut Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology Chenguang Shi verfasserin aut Wei Qiu verfasserin aut Jianjiang Zhou verfasserin aut In Sensors MDPI AG, 2003 20(2020), 5, p 1269 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:5, p 1269 https://doi.org/10.3390/s20051269 kostenfrei https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f kostenfrei https://www.mdpi.com/1424-8220/20/5/1269 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 5, p 1269 |
spelling |
10.3390/s20051269 doi (DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f DE-627 ger DE-627 rakwb eng TP1-1185 Lintao Ding verfasserin aut Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology Chenguang Shi verfasserin aut Wei Qiu verfasserin aut Jianjiang Zhou verfasserin aut In Sensors MDPI AG, 2003 20(2020), 5, p 1269 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:5, p 1269 https://doi.org/10.3390/s20051269 kostenfrei https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f kostenfrei https://www.mdpi.com/1424-8220/20/5/1269 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 5, p 1269 |
allfields_unstemmed |
10.3390/s20051269 doi (DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f DE-627 ger DE-627 rakwb eng TP1-1185 Lintao Ding verfasserin aut Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology Chenguang Shi verfasserin aut Wei Qiu verfasserin aut Jianjiang Zhou verfasserin aut In Sensors MDPI AG, 2003 20(2020), 5, p 1269 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:5, p 1269 https://doi.org/10.3390/s20051269 kostenfrei https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f kostenfrei https://www.mdpi.com/1424-8220/20/5/1269 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 5, p 1269 |
allfieldsGer |
10.3390/s20051269 doi (DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f DE-627 ger DE-627 rakwb eng TP1-1185 Lintao Ding verfasserin aut Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology Chenguang Shi verfasserin aut Wei Qiu verfasserin aut Jianjiang Zhou verfasserin aut In Sensors MDPI AG, 2003 20(2020), 5, p 1269 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:5, p 1269 https://doi.org/10.3390/s20051269 kostenfrei https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f kostenfrei https://www.mdpi.com/1424-8220/20/5/1269 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 5, p 1269 |
allfieldsSound |
10.3390/s20051269 doi (DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f DE-627 ger DE-627 rakwb eng TP1-1185 Lintao Ding verfasserin aut Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology Chenguang Shi verfasserin aut Wei Qiu verfasserin aut Jianjiang Zhou verfasserin aut In Sensors MDPI AG, 2003 20(2020), 5, p 1269 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:5, p 1269 https://doi.org/10.3390/s20051269 kostenfrei https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f kostenfrei https://www.mdpi.com/1424-8220/20/5/1269 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 5, p 1269 |
language |
English |
source |
In Sensors 20(2020), 5, p 1269 volume:20 year:2020 number:5, p 1269 |
sourceStr |
In Sensors 20(2020), 5, p 1269 volume:20 year:2020 number:5, p 1269 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Lintao Ding @@aut@@ Chenguang Shi @@aut@@ Wei Qiu @@aut@@ Jianjiang Zhou @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ07871530X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07871530X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503144732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20051269</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07871530X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lintao Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (lpi)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bayesian cramer–rao lower bound (bcrlb)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-target tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenguang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianjiang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 5, p 1269</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 1269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20051269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/5/1269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 1269</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Lintao Ding |
spellingShingle |
Lintao Ding misc TP1-1185 misc low probability of intercept (lpi) misc bayesian cramer–rao lower bound (bcrlb) misc multi-target tracking misc radar network misc Chemical technology Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
authorStr |
Lintao Ding |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept low probability of intercept (lpi) bayesian cramer–rao lower bound (bcrlb) multi-target tracking radar network |
topic |
misc TP1-1185 misc low probability of intercept (lpi) misc bayesian cramer–rao lower bound (bcrlb) misc multi-target tracking misc radar network misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc low probability of intercept (lpi) misc bayesian cramer–rao lower bound (bcrlb) misc multi-target tracking misc radar network misc Chemical technology |
topic_browse |
misc TP1-1185 misc low probability of intercept (lpi) misc bayesian cramer–rao lower bound (bcrlb) misc multi-target tracking misc radar network misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
ctrlnum |
(DE-627)DOAJ07871530X (DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f |
title_full |
Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
author_sort |
Lintao Ding |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Lintao Ding Chenguang Shi Wei Qiu Jianjiang Zhou |
container_volume |
20 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Lintao Ding |
doi_str_mv |
10.3390/s20051269 |
author2-role |
verfasserin |
title_sort |
joint dwell time and bandwidth optimization for multi-target tracking in radar network based on low probability of intercept |
callnumber |
TP1-1185 |
title_auth |
Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
abstract |
Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. |
abstractGer |
Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. |
abstract_unstemmed |
Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 1269 |
title_short |
Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept |
url |
https://doi.org/10.3390/s20051269 https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f https://www.mdpi.com/1424-8220/20/5/1269 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Chenguang Shi Wei Qiu Jianjiang Zhou |
author2Str |
Chenguang Shi Wei Qiu Jianjiang Zhou |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s20051269 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:24:45.596Z |
_version_ |
1803587090486657024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07871530X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503144732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20051269</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07871530X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb1f3b2444b8946d7acb36a3768f6fb2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Lintao Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joint Dwell Time and Bandwidth Optimization for Multi-Target Tracking in Radar Network Based on Low Probability of Intercept</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Radar network systems have been demonstrated to offer numerous advantages for target tracking. In this paper, a low probability of intercept (LPI)-based joint dwell time and bandwidth optimization strategy is proposed for multi-target tracking in a radar network. Since the Bayesian Cramer–Rao lower bound (BCRLB) provides a lower bound on parameter estimation, it can be utilized as the accuracy metric for target tracking. In this strategy, in order to improve the LPI performance of the radar network, the total dwell time consumption of the underlying system is minimized, while guaranteeing a predetermined tracking accuracy. There are two adaptable parameters in the optimization problem: one for dwell time, and the other for bandwidth allocation. Since the nonlinear programming-based genetic algorithm (NPGA) can solve the nonlinear problem well, we develop a method based upon NPGA to solve the resulting problem. The simulation results demonstrate that the proposed strategy has superiority over traditional algorithms, and can achieve a better LPI performance of this radar network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low probability of intercept (lpi)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bayesian cramer–rao lower bound (bcrlb)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-target tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radar network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chenguang Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Qiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianjiang Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 5, p 1269</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5, p 1269</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20051269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b1f3b2444b8946d7acb36a3768f6fb2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/5/1269</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">5, p 1269</subfield></datafield></record></collection>
|
score |
7.4007635 |