Monitoring and Analysis of Geotemperature during the Tunnel Construction
High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemper...
Ausführliche Beschreibung
Autor*in: |
Tao Wen [verfasserIn] Zheng Hu [verfasserIn] Yankun Wang [verfasserIn] Zihan Zhang [verfasserIn] Jinshan Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Energies - MDPI AG, 2008, 15(2022), 3, p 736 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:3, p 736 |
Links: |
---|
DOI / URN: |
10.3390/en15030736 |
---|
Katalog-ID: |
DOAJ078734258 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078734258 | ||
003 | DE-627 | ||
005 | 20240414204241.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/en15030736 |2 doi | |
035 | |a (DE-627)DOAJ078734258 | ||
035 | |a (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Tao Wen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monitoring and Analysis of Geotemperature during the Tunnel Construction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. | ||
650 | 4 | |a construction | |
650 | 4 | |a high geotemperature tunnel | |
650 | 4 | |a air temperature | |
650 | 4 | |a rock temperature | |
650 | 4 | |a variation laws | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
700 | 0 | |a Zheng Hu |e verfasserin |4 aut | |
700 | 0 | |a Yankun Wang |e verfasserin |4 aut | |
700 | 0 | |a Zihan Zhang |e verfasserin |4 aut | |
700 | 0 | |a Jinshan Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Energies |d MDPI AG, 2008 |g 15(2022), 3, p 736 |w (DE-627)572083742 |w (DE-600)2437446-5 |x 19961073 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:3, p 736 |
856 | 4 | 0 | |u https://doi.org/10.3390/en15030736 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1073/15/3/736 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1073 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 3, p 736 |
author_variant |
t w tw z h zh y w yw z z zz j s js |
---|---|
matchkey_str |
article:19961073:2022----::oioignaayiogoeprtrdrnteu |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/en15030736 doi (DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 DE-627 ger DE-627 rakwb eng Tao Wen verfasserin aut Monitoring and Analysis of Geotemperature during the Tunnel Construction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. construction high geotemperature tunnel air temperature rock temperature variation laws Technology T Zheng Hu verfasserin aut Yankun Wang verfasserin aut Zihan Zhang verfasserin aut Jinshan Sun verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 736 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 736 https://doi.org/10.3390/en15030736 kostenfrei https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 kostenfrei https://www.mdpi.com/1996-1073/15/3/736 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 736 |
spelling |
10.3390/en15030736 doi (DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 DE-627 ger DE-627 rakwb eng Tao Wen verfasserin aut Monitoring and Analysis of Geotemperature during the Tunnel Construction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. construction high geotemperature tunnel air temperature rock temperature variation laws Technology T Zheng Hu verfasserin aut Yankun Wang verfasserin aut Zihan Zhang verfasserin aut Jinshan Sun verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 736 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 736 https://doi.org/10.3390/en15030736 kostenfrei https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 kostenfrei https://www.mdpi.com/1996-1073/15/3/736 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 736 |
allfields_unstemmed |
10.3390/en15030736 doi (DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 DE-627 ger DE-627 rakwb eng Tao Wen verfasserin aut Monitoring and Analysis of Geotemperature during the Tunnel Construction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. construction high geotemperature tunnel air temperature rock temperature variation laws Technology T Zheng Hu verfasserin aut Yankun Wang verfasserin aut Zihan Zhang verfasserin aut Jinshan Sun verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 736 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 736 https://doi.org/10.3390/en15030736 kostenfrei https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 kostenfrei https://www.mdpi.com/1996-1073/15/3/736 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 736 |
allfieldsGer |
10.3390/en15030736 doi (DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 DE-627 ger DE-627 rakwb eng Tao Wen verfasserin aut Monitoring and Analysis of Geotemperature during the Tunnel Construction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. construction high geotemperature tunnel air temperature rock temperature variation laws Technology T Zheng Hu verfasserin aut Yankun Wang verfasserin aut Zihan Zhang verfasserin aut Jinshan Sun verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 736 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 736 https://doi.org/10.3390/en15030736 kostenfrei https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 kostenfrei https://www.mdpi.com/1996-1073/15/3/736 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 736 |
allfieldsSound |
10.3390/en15030736 doi (DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 DE-627 ger DE-627 rakwb eng Tao Wen verfasserin aut Monitoring and Analysis of Geotemperature during the Tunnel Construction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. construction high geotemperature tunnel air temperature rock temperature variation laws Technology T Zheng Hu verfasserin aut Yankun Wang verfasserin aut Zihan Zhang verfasserin aut Jinshan Sun verfasserin aut In Energies MDPI AG, 2008 15(2022), 3, p 736 (DE-627)572083742 (DE-600)2437446-5 19961073 nnns volume:15 year:2022 number:3, p 736 https://doi.org/10.3390/en15030736 kostenfrei https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 kostenfrei https://www.mdpi.com/1996-1073/15/3/736 kostenfrei https://doaj.org/toc/1996-1073 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 3, p 736 |
language |
English |
source |
In Energies 15(2022), 3, p 736 volume:15 year:2022 number:3, p 736 |
sourceStr |
In Energies 15(2022), 3, p 736 volume:15 year:2022 number:3, p 736 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
construction high geotemperature tunnel air temperature rock temperature variation laws Technology T |
isfreeaccess_bool |
true |
container_title |
Energies |
authorswithroles_txt_mv |
Tao Wen @@aut@@ Zheng Hu @@aut@@ Yankun Wang @@aut@@ Zihan Zhang @@aut@@ Jinshan Sun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
572083742 |
id |
DOAJ078734258 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078734258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15030736</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078734258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring and Analysis of Geotemperature during the Tunnel Construction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high geotemperature tunnel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rock temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variation laws</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yankun Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinshan Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 3, p 736</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 736</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15030736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/3/736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 736</subfield></datafield></record></collection>
|
author |
Tao Wen |
spellingShingle |
Tao Wen misc construction misc high geotemperature tunnel misc air temperature misc rock temperature misc variation laws misc Technology misc T Monitoring and Analysis of Geotemperature during the Tunnel Construction |
authorStr |
Tao Wen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)572083742 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19961073 |
topic_title |
Monitoring and Analysis of Geotemperature during the Tunnel Construction construction high geotemperature tunnel air temperature rock temperature variation laws |
topic |
misc construction misc high geotemperature tunnel misc air temperature misc rock temperature misc variation laws misc Technology misc T |
topic_unstemmed |
misc construction misc high geotemperature tunnel misc air temperature misc rock temperature misc variation laws misc Technology misc T |
topic_browse |
misc construction misc high geotemperature tunnel misc air temperature misc rock temperature misc variation laws misc Technology misc T |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energies |
hierarchy_parent_id |
572083742 |
hierarchy_top_title |
Energies |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)572083742 (DE-600)2437446-5 |
title |
Monitoring and Analysis of Geotemperature during the Tunnel Construction |
ctrlnum |
(DE-627)DOAJ078734258 (DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88 |
title_full |
Monitoring and Analysis of Geotemperature during the Tunnel Construction |
author_sort |
Tao Wen |
journal |
Energies |
journalStr |
Energies |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Tao Wen Zheng Hu Yankun Wang Zihan Zhang Jinshan Sun |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Tao Wen |
doi_str_mv |
10.3390/en15030736 |
author2-role |
verfasserin |
title_sort |
monitoring and analysis of geotemperature during the tunnel construction |
title_auth |
Monitoring and Analysis of Geotemperature during the Tunnel Construction |
abstract |
High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. |
abstractGer |
High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. |
abstract_unstemmed |
High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 736 |
title_short |
Monitoring and Analysis of Geotemperature during the Tunnel Construction |
url |
https://doi.org/10.3390/en15030736 https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88 https://www.mdpi.com/1996-1073/15/3/736 https://doaj.org/toc/1996-1073 |
remote_bool |
true |
author2 |
Zheng Hu Yankun Wang Zihan Zhang Jinshan Sun |
author2Str |
Zheng Hu Yankun Wang Zihan Zhang Jinshan Sun |
ppnlink |
572083742 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/en15030736 |
up_date |
2024-07-03T19:31:48.971Z |
_version_ |
1803587534426472448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078734258</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414204241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/en15030736</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078734258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc8f202ce9fc14d7c89c4e50ddfc91a88</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tao Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring and Analysis of Geotemperature during the Tunnel Construction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High geotemperatures are encountered during tunnel construction in areas with complex geological structures, which can seriously affect personnel and equipment in the process of tunnel construction and operation. The Nige tunnel, a deep-buried extra-long tunnel, was selected to monitor the geotemperature during construction. The air, rock, and water temperatures during the tunnel construction were measured at the tunnel face, and the actual temperatures of the rock or water body at the tunnel face were measured by advanced drilling. The variation trends of the water temperature, air temperature, and flow of water with the tunnel mileage were analyzed. The differences in three measured rock temperatures in three advanced drillings were revealed. The results showed that the Nige tunnel had a maximum water temperature of 63.4 °C, maximum rock temperature (Rock T) of 88.8 °C, and maximum air temperature (Air T) of 56.4 °C. Increasing trends of the air, rock, and water temperatures with the tunnel’s horizontal distance and the buried depth (vertical depth) were obvious, and the geotemperature gradient was approximately 7.6 °C per 100 m. Additionally, the variation laws of the construction ambient temperature with time in a complete construction cycle showed four stage characteristics, and each stage presented different mathematical relationships. These findings will provide guidance for the construction of high geotemperature tunnels in future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high geotemperature tunnel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rock temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variation laws</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheng Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yankun Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihan Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinshan Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Energies</subfield><subfield code="d">MDPI AG, 2008</subfield><subfield code="g">15(2022), 3, p 736</subfield><subfield code="w">(DE-627)572083742</subfield><subfield code="w">(DE-600)2437446-5</subfield><subfield code="x">19961073</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3, p 736</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/en15030736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c8f202ce9fc14d7c89c4e50ddfc91a88</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1073/15/3/736</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1073</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">3, p 736</subfield></datafield></record></collection>
|
score |
7.399946 |