A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems
The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient te...
Ausführliche Beschreibung
Autor*in: |
Cong Wang [verfasserIn] Zhen Li [verfasserIn] Zhongli Pan [verfasserIn] Daoliang Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 18(2018), 10, p 3382 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2018 ; number:10, p 3382 |
Links: |
---|
DOI / URN: |
10.3390/s18103382 |
---|
Katalog-ID: |
DOAJ078774659 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078774659 | ||
003 | DE-627 | ||
005 | 20230307011329.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s18103382 |2 doi | |
035 | |a (DE-627)DOAJ078774659 | ||
035 | |a (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Cong Wang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. | ||
650 | 4 | |a nitrate nitrogen | |
650 | 4 | |a buffer operator | |
650 | 4 | |a absorbance | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Zhen Li |e verfasserin |4 aut | |
700 | 0 | |a Zhongli Pan |e verfasserin |4 aut | |
700 | 0 | |a Daoliang Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 18(2018), 10, p 3382 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2018 |g number:10, p 3382 |
856 | 4 | 0 | |u https://doi.org/10.3390/s18103382 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 |z kostenfrei |
856 | 4 | 0 | |u http://www.mdpi.com/1424-8220/18/10/3382 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2018 |e 10, p 3382 |
author_variant |
c w cw z l zl z p zp d l dl |
---|---|
matchkey_str |
article:14248220:2018----::hgpromnepolcrncesreieontaeirgnneic |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
TP |
publishDate |
2018 |
allfields |
10.3390/s18103382 doi (DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 DE-627 ger DE-627 rakwb eng TP1-1185 Cong Wang verfasserin aut A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. nitrate nitrogen buffer operator absorbance Chemical technology Zhen Li verfasserin aut Zhongli Pan verfasserin aut Daoliang Li verfasserin aut In Sensors MDPI AG, 2003 18(2018), 10, p 3382 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:10, p 3382 https://doi.org/10.3390/s18103382 kostenfrei https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 kostenfrei http://www.mdpi.com/1424-8220/18/10/3382 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 10, p 3382 |
spelling |
10.3390/s18103382 doi (DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 DE-627 ger DE-627 rakwb eng TP1-1185 Cong Wang verfasserin aut A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. nitrate nitrogen buffer operator absorbance Chemical technology Zhen Li verfasserin aut Zhongli Pan verfasserin aut Daoliang Li verfasserin aut In Sensors MDPI AG, 2003 18(2018), 10, p 3382 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:10, p 3382 https://doi.org/10.3390/s18103382 kostenfrei https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 kostenfrei http://www.mdpi.com/1424-8220/18/10/3382 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 10, p 3382 |
allfields_unstemmed |
10.3390/s18103382 doi (DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 DE-627 ger DE-627 rakwb eng TP1-1185 Cong Wang verfasserin aut A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. nitrate nitrogen buffer operator absorbance Chemical technology Zhen Li verfasserin aut Zhongli Pan verfasserin aut Daoliang Li verfasserin aut In Sensors MDPI AG, 2003 18(2018), 10, p 3382 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:10, p 3382 https://doi.org/10.3390/s18103382 kostenfrei https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 kostenfrei http://www.mdpi.com/1424-8220/18/10/3382 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 10, p 3382 |
allfieldsGer |
10.3390/s18103382 doi (DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 DE-627 ger DE-627 rakwb eng TP1-1185 Cong Wang verfasserin aut A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. nitrate nitrogen buffer operator absorbance Chemical technology Zhen Li verfasserin aut Zhongli Pan verfasserin aut Daoliang Li verfasserin aut In Sensors MDPI AG, 2003 18(2018), 10, p 3382 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:10, p 3382 https://doi.org/10.3390/s18103382 kostenfrei https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 kostenfrei http://www.mdpi.com/1424-8220/18/10/3382 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 10, p 3382 |
allfieldsSound |
10.3390/s18103382 doi (DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 DE-627 ger DE-627 rakwb eng TP1-1185 Cong Wang verfasserin aut A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. nitrate nitrogen buffer operator absorbance Chemical technology Zhen Li verfasserin aut Zhongli Pan verfasserin aut Daoliang Li verfasserin aut In Sensors MDPI AG, 2003 18(2018), 10, p 3382 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:18 year:2018 number:10, p 3382 https://doi.org/10.3390/s18103382 kostenfrei https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 kostenfrei http://www.mdpi.com/1424-8220/18/10/3382 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 10, p 3382 |
language |
English |
source |
In Sensors 18(2018), 10, p 3382 volume:18 year:2018 number:10, p 3382 |
sourceStr |
In Sensors 18(2018), 10, p 3382 volume:18 year:2018 number:10, p 3382 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nitrate nitrogen buffer operator absorbance Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Cong Wang @@aut@@ Zhen Li @@aut@@ Zhongli Pan @@aut@@ Daoliang Li @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ078774659 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ078774659</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307011329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s18103382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078774659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrate nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">buffer operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">absorbance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongli Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daoliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">18(2018), 10, p 3382</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10, p 3382</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s18103382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/18/10/3382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">10, p 3382</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Cong Wang |
spellingShingle |
Cong Wang misc TP1-1185 misc nitrate nitrogen misc buffer operator misc absorbance misc Chemical technology A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
authorStr |
Cong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems nitrate nitrogen buffer operator absorbance |
topic |
misc TP1-1185 misc nitrate nitrogen misc buffer operator misc absorbance misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc nitrate nitrogen misc buffer operator misc absorbance misc Chemical technology |
topic_browse |
misc TP1-1185 misc nitrate nitrogen misc buffer operator misc absorbance misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
ctrlnum |
(DE-627)DOAJ078774659 (DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741 |
title_full |
A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
author_sort |
Cong Wang |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Cong Wang Zhen Li Zhongli Pan Daoliang Li |
container_volume |
18 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Cong Wang |
doi_str_mv |
10.3390/s18103382 |
author2-role |
verfasserin |
title_sort |
high-performance optoelectronic sensor device for nitrate nitrogen in recirculating aquaculture systems |
callnumber |
TP1-1185 |
title_auth |
A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
abstract |
The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. |
abstractGer |
The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. |
abstract_unstemmed |
The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 3382 |
title_short |
A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems |
url |
https://doi.org/10.3390/s18103382 https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741 http://www.mdpi.com/1424-8220/18/10/3382 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Zhen Li Zhongli Pan Daoliang Li |
author2Str |
Zhen Li Zhongli Pan Daoliang Li |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s18103382 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:46:32.704Z |
_version_ |
1803588461090832384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ078774659</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307011329.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s18103382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078774659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f492029163f4a89ae482f6b71fc0741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A High-Performance Optoelectronic Sensor Device for Nitrate Nitrogen in Recirculating Aquaculture Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The determination of nitrate nitrogen (NO3-N) in recirculating aquaculture systems is of great significance for the health assessment of the living environment of aquatic animals. Unfortunately, the commonly used spectrophotometric methods often yield unstable results, especially when the ambient temperature varies greatly in the field measurement. Here, we have developed a novel handheld absorbance measurement sensor based on the thymol-NO3-N chromogenic rearrangement reaction. In terms of hardware, the sensor adopts a dual channel/dual wavelength colorimeter structure that features a modulated light source transmitter and a synchronous detector receiver. The circuit measures the ratio of light absorbed by the sample and reference containers at two LEDs with peak wavelengths at 420 nm and 450 nm. Using the modulated source and synchronous detector rather than a constant (DC) source eliminates measurement errors due to ambient light and low frequency noise and provides higher accuracy. In terms of software, we design a new quantitative analysis algorithm for absorbance by studying colloid absorbing behavior. The application of a buffer operator embedded in the algorithm makes the sensor get the environmental correction function. The results have shown that the sensitivity, repeatability, precision and environmental stability are higher than that by ordinary spectrophotometry. Lastly, we have a brief overview of future work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitrate nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">buffer operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">absorbance</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhen Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhongli Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daoliang Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">18(2018), 10, p 3382</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:10, p 3382</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s18103382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f492029163f4a89ae482f6b71fc0741</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.mdpi.com/1424-8220/18/10/3382</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">10, p 3382</subfield></datafield></record></collection>
|
score |
7.4019375 |