An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks
Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative ro...
Ausführliche Beschreibung
Autor*in: |
Yating Gao [verfasserIn] Guixia Kang [verfasserIn] Jianming Cheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 19(2019), 21, p 4821 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2019 ; number:21, p 4821 |
Links: |
---|
DOI / URN: |
10.3390/s19214821 |
---|
Katalog-ID: |
DOAJ078784794 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078784794 | ||
003 | DE-627 | ||
005 | 20230503003922.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s19214821 |2 doi | |
035 | |a (DE-627)DOAJ078784794 | ||
035 | |a (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Yating Gao |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. | ||
650 | 4 | |a wireless multi-hop networks | |
650 | 4 | |a cooperative routing | |
650 | 4 | |a opportunistic routing | |
650 | 4 | |a transmission beamforming | |
650 | 4 | |a end-to-end transmission reliability and delay | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Guixia Kang |e verfasserin |4 aut | |
700 | 0 | |a Jianming Cheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 19(2019), 21, p 4821 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2019 |g number:21, p 4821 |
856 | 4 | 0 | |u https://doi.org/10.3390/s19214821 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/19/21/4821 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2019 |e 21, p 4821 |
author_variant |
y g yg g k gk j c jc |
---|---|
matchkey_str |
article:14248220:2019----::npotnsicoeaieaktrnmsinceenie |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TP |
publishDate |
2019 |
allfields |
10.3390/s19214821 doi (DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 DE-627 ger DE-627 rakwb eng TP1-1185 Yating Gao verfasserin aut An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology Guixia Kang verfasserin aut Jianming Cheng verfasserin aut In Sensors MDPI AG, 2003 19(2019), 21, p 4821 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:21, p 4821 https://doi.org/10.3390/s19214821 kostenfrei https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 kostenfrei https://www.mdpi.com/1424-8220/19/21/4821 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 21, p 4821 |
spelling |
10.3390/s19214821 doi (DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 DE-627 ger DE-627 rakwb eng TP1-1185 Yating Gao verfasserin aut An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology Guixia Kang verfasserin aut Jianming Cheng verfasserin aut In Sensors MDPI AG, 2003 19(2019), 21, p 4821 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:21, p 4821 https://doi.org/10.3390/s19214821 kostenfrei https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 kostenfrei https://www.mdpi.com/1424-8220/19/21/4821 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 21, p 4821 |
allfields_unstemmed |
10.3390/s19214821 doi (DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 DE-627 ger DE-627 rakwb eng TP1-1185 Yating Gao verfasserin aut An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology Guixia Kang verfasserin aut Jianming Cheng verfasserin aut In Sensors MDPI AG, 2003 19(2019), 21, p 4821 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:21, p 4821 https://doi.org/10.3390/s19214821 kostenfrei https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 kostenfrei https://www.mdpi.com/1424-8220/19/21/4821 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 21, p 4821 |
allfieldsGer |
10.3390/s19214821 doi (DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 DE-627 ger DE-627 rakwb eng TP1-1185 Yating Gao verfasserin aut An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology Guixia Kang verfasserin aut Jianming Cheng verfasserin aut In Sensors MDPI AG, 2003 19(2019), 21, p 4821 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:21, p 4821 https://doi.org/10.3390/s19214821 kostenfrei https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 kostenfrei https://www.mdpi.com/1424-8220/19/21/4821 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 21, p 4821 |
allfieldsSound |
10.3390/s19214821 doi (DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 DE-627 ger DE-627 rakwb eng TP1-1185 Yating Gao verfasserin aut An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology Guixia Kang verfasserin aut Jianming Cheng verfasserin aut In Sensors MDPI AG, 2003 19(2019), 21, p 4821 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:19 year:2019 number:21, p 4821 https://doi.org/10.3390/s19214821 kostenfrei https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 kostenfrei https://www.mdpi.com/1424-8220/19/21/4821 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 21, p 4821 |
language |
English |
source |
In Sensors 19(2019), 21, p 4821 volume:19 year:2019 number:21, p 4821 |
sourceStr |
In Sensors 19(2019), 21, p 4821 volume:19 year:2019 number:21, p 4821 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Yating Gao @@aut@@ Guixia Kang @@aut@@ Jianming Cheng @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ078784794 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078784794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503003922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19214821</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078784794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ee293d99b76416196815b163a3d4e23</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yating Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless multi-hop networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opportunistic routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission beamforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">end-to-end transmission reliability and delay</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guixia Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 21, p 4821</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:21, p 4821</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19214821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ee293d99b76416196815b163a3d4e23</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/19/21/4821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">21, p 4821</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yating Gao |
spellingShingle |
Yating Gao misc TP1-1185 misc wireless multi-hop networks misc cooperative routing misc opportunistic routing misc transmission beamforming misc end-to-end transmission reliability and delay misc Chemical technology An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
authorStr |
Yating Gao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks wireless multi-hop networks cooperative routing opportunistic routing transmission beamforming end-to-end transmission reliability and delay |
topic |
misc TP1-1185 misc wireless multi-hop networks misc cooperative routing misc opportunistic routing misc transmission beamforming misc end-to-end transmission reliability and delay misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc wireless multi-hop networks misc cooperative routing misc opportunistic routing misc transmission beamforming misc end-to-end transmission reliability and delay misc Chemical technology |
topic_browse |
misc TP1-1185 misc wireless multi-hop networks misc cooperative routing misc opportunistic routing misc transmission beamforming misc end-to-end transmission reliability and delay misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
ctrlnum |
(DE-627)DOAJ078784794 (DE-599)DOAJ1ee293d99b76416196815b163a3d4e23 |
title_full |
An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
author_sort |
Yating Gao |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Yating Gao Guixia Kang Jianming Cheng |
container_volume |
19 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Yating Gao |
doi_str_mv |
10.3390/s19214821 |
author2-role |
verfasserin |
title_sort |
opportunistic cooperative packet transmission scheme in wireless multi-hop networks |
callnumber |
TP1-1185 |
title_auth |
An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
abstract |
Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. |
abstractGer |
Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. |
abstract_unstemmed |
Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
21, p 4821 |
title_short |
An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks |
url |
https://doi.org/10.3390/s19214821 https://doaj.org/article/1ee293d99b76416196815b163a3d4e23 https://www.mdpi.com/1424-8220/19/21/4821 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Guixia Kang Jianming Cheng |
author2Str |
Guixia Kang Jianming Cheng |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s19214821 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:50:19.675Z |
_version_ |
1803588699091369984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078784794</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503003922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s19214821</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078784794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1ee293d99b76416196815b163a3d4e23</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yating Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Opportunistic Cooperative Packet Transmission Scheme in Wireless Multi-Hop Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cooperative routing, combining cooperative communication in the physical layer and routing technology in the network layer, is one of the most widely used technologies for improving end-to-end transmission reliability and delay in the wireless multi-hop networks. However, the existing cooperative routing schemes are designed based on an optimal fixed-path routing so that the end-to-end performance is greatly restricted by the low spatial efficiency. To address this problem, in this paper an opportunistic cooperative packet transmission (OCPT) scheme is explored by combining cooperative communication and opportunistic routing. The proposed scheme divides the multi-hop route into multiple virtual multiple-input-multiple-output (MIMO) transmissions. Before each transmission, based on the idea of opportunistic routing, a cluster head (CH) is introduced to determine the multiple transmitters and multiple receivers to form a cluster. Then, the single-hop transmission distance is defined as the metric of forward progress to the destination. Each intra-cluster cooperative packet transmission is formulated as a transmit beamforming optimization problem, and an iterative optimal beamforming policy is proposed to solve the problem and maximize the single-hop transmission distance. CH organizes multiple transmitters to cooperatively transmit packets to multiple receivers with the optimized transmit beamforming vector. Finally, according to the transmission results, the cluster is updated and the new cooperative transmission is started. Iteratively, the transmission lasts until the destination has successfully received the packet. We comprehensively evaluate the OCPT scheme by comparing it with conventional routing schemes. The simulation results demonstrate that the proposed OCPT scheme is effective on shortening the end-to-end transmission delay, increasing the number of successful packet transmissions and improving the packet arrival ratio and transmission efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless multi-hop networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cooperative routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">opportunistic routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmission beamforming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">end-to-end transmission reliability and delay</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guixia Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianming Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">19(2019), 21, p 4821</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:21, p 4821</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s19214821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1ee293d99b76416196815b163a3d4e23</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/19/21/4821</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">21, p 4821</subfield></datafield></record></collection>
|
score |
7.3997507 |