Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods
Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the...
Ausführliche Beschreibung
Autor*in: |
Qianyi Gu [verfasserIn] Yang Han [verfasserIn] Yaping Xu [verfasserIn] Haiyan Yao [verfasserIn] Haofang Niu [verfasserIn] Fang Huang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Remote Sensing - MDPI AG, 2009, 14(2022), 1, p 226 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:1, p 226 |
Links: |
---|
DOI / URN: |
10.3390/rs14010226 |
---|
Katalog-ID: |
DOAJ07880177X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ07880177X | ||
003 | DE-627 | ||
005 | 20240414220050.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/rs14010226 |2 doi | |
035 | |a (DE-627)DOAJ07880177X | ||
035 | |a (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Qianyi Gu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. | ||
650 | 4 | |a bidirectional polarization distribution function | |
650 | 4 | |a deep learning | |
650 | 4 | |a machine learning | |
650 | 4 | |a saline-alkaline soil | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Yang Han |e verfasserin |4 aut | |
700 | 0 | |a Yaping Xu |e verfasserin |4 aut | |
700 | 0 | |a Haiyan Yao |e verfasserin |4 aut | |
700 | 0 | |a Haofang Niu |e verfasserin |4 aut | |
700 | 0 | |a Fang Huang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Remote Sensing |d MDPI AG, 2009 |g 14(2022), 1, p 226 |w (DE-627)608937916 |w (DE-600)2513863-7 |x 20724292 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:1, p 226 |
856 | 4 | 0 | |u https://doi.org/10.3390/rs14010226 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/14/1/226 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-4292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 1, p 226 |
author_variant |
q g qg y h yh y x yx h y hy h n hn f h fh |
---|---|
matchkey_str |
article:20724292:2022----::aoaoyeerhnoaieotclrprisfaielaieolaeosmeprcl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3390/rs14010226 doi (DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 DE-627 ger DE-627 rakwb eng Qianyi Gu verfasserin aut Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q Yang Han verfasserin aut Yaping Xu verfasserin aut Haiyan Yao verfasserin aut Haofang Niu verfasserin aut Fang Huang verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 1, p 226 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:1, p 226 https://doi.org/10.3390/rs14010226 kostenfrei https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 kostenfrei https://www.mdpi.com/2072-4292/14/1/226 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 1, p 226 |
spelling |
10.3390/rs14010226 doi (DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 DE-627 ger DE-627 rakwb eng Qianyi Gu verfasserin aut Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q Yang Han verfasserin aut Yaping Xu verfasserin aut Haiyan Yao verfasserin aut Haofang Niu verfasserin aut Fang Huang verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 1, p 226 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:1, p 226 https://doi.org/10.3390/rs14010226 kostenfrei https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 kostenfrei https://www.mdpi.com/2072-4292/14/1/226 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 1, p 226 |
allfields_unstemmed |
10.3390/rs14010226 doi (DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 DE-627 ger DE-627 rakwb eng Qianyi Gu verfasserin aut Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q Yang Han verfasserin aut Yaping Xu verfasserin aut Haiyan Yao verfasserin aut Haofang Niu verfasserin aut Fang Huang verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 1, p 226 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:1, p 226 https://doi.org/10.3390/rs14010226 kostenfrei https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 kostenfrei https://www.mdpi.com/2072-4292/14/1/226 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 1, p 226 |
allfieldsGer |
10.3390/rs14010226 doi (DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 DE-627 ger DE-627 rakwb eng Qianyi Gu verfasserin aut Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q Yang Han verfasserin aut Yaping Xu verfasserin aut Haiyan Yao verfasserin aut Haofang Niu verfasserin aut Fang Huang verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 1, p 226 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:1, p 226 https://doi.org/10.3390/rs14010226 kostenfrei https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 kostenfrei https://www.mdpi.com/2072-4292/14/1/226 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 1, p 226 |
allfieldsSound |
10.3390/rs14010226 doi (DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 DE-627 ger DE-627 rakwb eng Qianyi Gu verfasserin aut Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q Yang Han verfasserin aut Yaping Xu verfasserin aut Haiyan Yao verfasserin aut Haofang Niu verfasserin aut Fang Huang verfasserin aut In Remote Sensing MDPI AG, 2009 14(2022), 1, p 226 (DE-627)608937916 (DE-600)2513863-7 20724292 nnns volume:14 year:2022 number:1, p 226 https://doi.org/10.3390/rs14010226 kostenfrei https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 kostenfrei https://www.mdpi.com/2072-4292/14/1/226 kostenfrei https://doaj.org/toc/2072-4292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 14 2022 1, p 226 |
language |
English |
source |
In Remote Sensing 14(2022), 1, p 226 volume:14 year:2022 number:1, p 226 |
sourceStr |
In Remote Sensing 14(2022), 1, p 226 volume:14 year:2022 number:1, p 226 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bidirectional polarization distribution function deep learning machine learning saline-alkaline soil Science Q |
isfreeaccess_bool |
true |
container_title |
Remote Sensing |
authorswithroles_txt_mv |
Qianyi Gu @@aut@@ Yang Han @@aut@@ Yaping Xu @@aut@@ Haiyan Yao @@aut@@ Haofang Niu @@aut@@ Fang Huang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
608937916 |
id |
DOAJ07880177X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07880177X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414220050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14010226</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07880177X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qianyi Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bidirectional polarization distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">saline-alkaline soil</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaping Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haofang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 1, p 226</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14010226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/1/226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 226</subfield></datafield></record></collection>
|
author |
Qianyi Gu |
spellingShingle |
Qianyi Gu misc bidirectional polarization distribution function misc deep learning misc machine learning misc saline-alkaline soil misc Science misc Q Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
authorStr |
Qianyi Gu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)608937916 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20724292 |
topic_title |
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods bidirectional polarization distribution function deep learning machine learning saline-alkaline soil |
topic |
misc bidirectional polarization distribution function misc deep learning misc machine learning misc saline-alkaline soil misc Science misc Q |
topic_unstemmed |
misc bidirectional polarization distribution function misc deep learning misc machine learning misc saline-alkaline soil misc Science misc Q |
topic_browse |
misc bidirectional polarization distribution function misc deep learning misc machine learning misc saline-alkaline soil misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Remote Sensing |
hierarchy_parent_id |
608937916 |
hierarchy_top_title |
Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)608937916 (DE-600)2513863-7 |
title |
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
ctrlnum |
(DE-627)DOAJ07880177X (DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8 |
title_full |
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
author_sort |
Qianyi Gu |
journal |
Remote Sensing |
journalStr |
Remote Sensing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Qianyi Gu Yang Han Yaping Xu Haiyan Yao Haofang Niu Fang Huang |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Qianyi Gu |
doi_str_mv |
10.3390/rs14010226 |
author2-role |
verfasserin |
title_sort |
laboratory research on polarized optical properties of saline-alkaline soil based on semi-empirical models and machine learning methods |
title_auth |
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
abstract |
Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. |
abstractGer |
Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. |
abstract_unstemmed |
Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1, p 226 |
title_short |
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods |
url |
https://doi.org/10.3390/rs14010226 https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8 https://www.mdpi.com/2072-4292/14/1/226 https://doaj.org/toc/2072-4292 |
remote_bool |
true |
author2 |
Yang Han Yaping Xu Haiyan Yao Haofang Niu Fang Huang |
author2Str |
Yang Han Yaping Xu Haiyan Yao Haofang Niu Fang Huang |
ppnlink |
608937916 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/rs14010226 |
up_date |
2024-07-03T19:56:35.786Z |
_version_ |
1803589093468143616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ07880177X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414220050.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/rs14010226</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ07880177X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ910c39453b0b4dbcbfd658f4bbfbe7f8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Qianyi Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Currently, soil salinization is a serious problem affecting agricultural production and human settlements. Remote sensing techniques have the advantages of a large monitoring range, rapid acquisition of information, implementation of dynamic monitoring, and low impact on the ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on the soil surface. Although there have been some studies on the BPDF model based on traditional machine learning methods, there is a lack of research on the BPDF model based on deep learning, especially using laboratory measurement spectrum data as the processing object, with limited research results. In this paper, we collected saline-alkaline soil in the field as the observation object and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning methods (support vector regression, random forest, and deep neural networks regression) to simulate and predict the surface Rp of saline-alkaline soils and compare them with experimental results. The measured values of the laboratory are compared and fitted, and the root mean squared error, R-squared, and correlation coefficient are calculated to express the prediction effect. The results show that the predictions of the BPDF model based on machine learning methods are generally better than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at 865 nm. The results of this study also provide new ideas and methods based on deep learning for the prediction of Rp on the surface of saline-alkaline soils.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bidirectional polarization distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">saline-alkaline soil</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaping Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiyan Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haofang Niu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Remote Sensing</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">14(2022), 1, p 226</subfield><subfield code="w">(DE-627)608937916</subfield><subfield code="w">(DE-600)2513863-7</subfield><subfield code="x">20724292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 226</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/rs14010226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/910c39453b0b4dbcbfd658f4bbfbe7f8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-4292/14/1/226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-4292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 226</subfield></datafield></record></collection>
|
score |
7.401613 |