Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It?
We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a r...
Ausführliche Beschreibung
Autor*in: |
Silva Guljaš [verfasserIn] Mirta Benšić [verfasserIn] Zdravka Krivdić Dupan [verfasserIn] Oliver Pavlović [verfasserIn] Vinko Krajina [verfasserIn] Deni Pavoković [verfasserIn] Petra Šmit Takač [verfasserIn] Matija Hranić [verfasserIn] Tamer Salha [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Tomography - MDPI AG, 2021, 8(2022), 3, Seite 1509-1521 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:3 ; pages:1509-1521 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/tomography8030124 |
---|
Katalog-ID: |
DOAJ078816149 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078816149 | ||
003 | DE-627 | ||
005 | 20240414211915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/tomography8030124 |2 doi | |
035 | |a (DE-627)DOAJ078816149 | ||
035 | |a (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Silva Guljaš |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. | ||
650 | 4 | |a magnetic resonance imaging | |
650 | 4 | |a muscle | |
650 | 4 | |a perfusion | |
650 | 4 | |a permeability | |
650 | 4 | |a prostate cancer | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Mirta Benšić |e verfasserin |4 aut | |
700 | 0 | |a Zdravka Krivdić Dupan |e verfasserin |4 aut | |
700 | 0 | |a Oliver Pavlović |e verfasserin |4 aut | |
700 | 0 | |a Vinko Krajina |e verfasserin |4 aut | |
700 | 0 | |a Deni Pavoković |e verfasserin |4 aut | |
700 | 0 | |a Petra Šmit Takač |e verfasserin |4 aut | |
700 | 0 | |a Matija Hranić |e verfasserin |4 aut | |
700 | 0 | |a Tamer Salha |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Tomography |d MDPI AG, 2021 |g 8(2022), 3, Seite 1509-1521 |w (DE-627)859892174 |w (DE-600)2857000-5 |x 2379139X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:3 |g pages:1509-1521 |
856 | 4 | 0 | |u https://doi.org/10.3390/tomography8030124 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4d3084c2eeb0477791b296731e44362f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2379-139X/8/3/124 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2379-1381 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2379-139X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 3 |h 1509-1521 |
author_variant |
s g sg m b mb z k d zkd o p op v k vk d p dp p š t pšt m h mh t s ts |
---|---|
matchkey_str |
article:2379139X:2022----::yaicnrsehnesuynutprmtieaiainfhpot |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.3390/tomography8030124 doi (DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f DE-627 ger DE-627 rakwb eng R858-859.7 Silva Guljaš verfasserin aut Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics Mirta Benšić verfasserin aut Zdravka Krivdić Dupan verfasserin aut Oliver Pavlović verfasserin aut Vinko Krajina verfasserin aut Deni Pavoković verfasserin aut Petra Šmit Takač verfasserin aut Matija Hranić verfasserin aut Tamer Salha verfasserin aut In Tomography MDPI AG, 2021 8(2022), 3, Seite 1509-1521 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:3 pages:1509-1521 https://doi.org/10.3390/tomography8030124 kostenfrei https://doaj.org/article/4d3084c2eeb0477791b296731e44362f kostenfrei https://www.mdpi.com/2379-139X/8/3/124 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 3 1509-1521 |
spelling |
10.3390/tomography8030124 doi (DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f DE-627 ger DE-627 rakwb eng R858-859.7 Silva Guljaš verfasserin aut Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics Mirta Benšić verfasserin aut Zdravka Krivdić Dupan verfasserin aut Oliver Pavlović verfasserin aut Vinko Krajina verfasserin aut Deni Pavoković verfasserin aut Petra Šmit Takač verfasserin aut Matija Hranić verfasserin aut Tamer Salha verfasserin aut In Tomography MDPI AG, 2021 8(2022), 3, Seite 1509-1521 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:3 pages:1509-1521 https://doi.org/10.3390/tomography8030124 kostenfrei https://doaj.org/article/4d3084c2eeb0477791b296731e44362f kostenfrei https://www.mdpi.com/2379-139X/8/3/124 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 3 1509-1521 |
allfields_unstemmed |
10.3390/tomography8030124 doi (DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f DE-627 ger DE-627 rakwb eng R858-859.7 Silva Guljaš verfasserin aut Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics Mirta Benšić verfasserin aut Zdravka Krivdić Dupan verfasserin aut Oliver Pavlović verfasserin aut Vinko Krajina verfasserin aut Deni Pavoković verfasserin aut Petra Šmit Takač verfasserin aut Matija Hranić verfasserin aut Tamer Salha verfasserin aut In Tomography MDPI AG, 2021 8(2022), 3, Seite 1509-1521 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:3 pages:1509-1521 https://doi.org/10.3390/tomography8030124 kostenfrei https://doaj.org/article/4d3084c2eeb0477791b296731e44362f kostenfrei https://www.mdpi.com/2379-139X/8/3/124 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 3 1509-1521 |
allfieldsGer |
10.3390/tomography8030124 doi (DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f DE-627 ger DE-627 rakwb eng R858-859.7 Silva Guljaš verfasserin aut Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics Mirta Benšić verfasserin aut Zdravka Krivdić Dupan verfasserin aut Oliver Pavlović verfasserin aut Vinko Krajina verfasserin aut Deni Pavoković verfasserin aut Petra Šmit Takač verfasserin aut Matija Hranić verfasserin aut Tamer Salha verfasserin aut In Tomography MDPI AG, 2021 8(2022), 3, Seite 1509-1521 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:3 pages:1509-1521 https://doi.org/10.3390/tomography8030124 kostenfrei https://doaj.org/article/4d3084c2eeb0477791b296731e44362f kostenfrei https://www.mdpi.com/2379-139X/8/3/124 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 3 1509-1521 |
allfieldsSound |
10.3390/tomography8030124 doi (DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f DE-627 ger DE-627 rakwb eng R858-859.7 Silva Guljaš verfasserin aut Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics Mirta Benšić verfasserin aut Zdravka Krivdić Dupan verfasserin aut Oliver Pavlović verfasserin aut Vinko Krajina verfasserin aut Deni Pavoković verfasserin aut Petra Šmit Takač verfasserin aut Matija Hranić verfasserin aut Tamer Salha verfasserin aut In Tomography MDPI AG, 2021 8(2022), 3, Seite 1509-1521 (DE-627)859892174 (DE-600)2857000-5 2379139X nnns volume:8 year:2022 number:3 pages:1509-1521 https://doi.org/10.3390/tomography8030124 kostenfrei https://doaj.org/article/4d3084c2eeb0477791b296731e44362f kostenfrei https://www.mdpi.com/2379-139X/8/3/124 kostenfrei https://doaj.org/toc/2379-1381 Journal toc kostenfrei https://doaj.org/toc/2379-139X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 3 1509-1521 |
language |
English |
source |
In Tomography 8(2022), 3, Seite 1509-1521 volume:8 year:2022 number:3 pages:1509-1521 |
sourceStr |
In Tomography 8(2022), 3, Seite 1509-1521 volume:8 year:2022 number:3 pages:1509-1521 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
magnetic resonance imaging muscle perfusion permeability prostate cancer Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
Tomography |
authorswithroles_txt_mv |
Silva Guljaš @@aut@@ Mirta Benšić @@aut@@ Zdravka Krivdić Dupan @@aut@@ Oliver Pavlović @@aut@@ Vinko Krajina @@aut@@ Deni Pavoković @@aut@@ Petra Šmit Takač @@aut@@ Matija Hranić @@aut@@ Tamer Salha @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
859892174 |
id |
DOAJ078816149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078816149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414211915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tomography8030124</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078816149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4d3084c2eeb0477791b296731e44362f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silva Guljaš</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirta Benšić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zdravka Krivdić Dupan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oliver Pavlović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinko Krajina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deni Pavoković</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petra Šmit Takač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matija Hranić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tamer Salha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tomography</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">8(2022), 3, Seite 1509-1521</subfield><subfield code="w">(DE-627)859892174</subfield><subfield code="w">(DE-600)2857000-5</subfield><subfield code="x">2379139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1509-1521</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tomography8030124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4d3084c2eeb0477791b296731e44362f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2379-139X/8/3/124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-139X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">1509-1521</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Silva Guljaš |
spellingShingle |
Silva Guljaš misc R858-859.7 misc magnetic resonance imaging misc muscle misc perfusion misc permeability misc prostate cancer misc Computer applications to medicine. Medical informatics Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
authorStr |
Silva Guljaš |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)859892174 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
2379139X |
topic_title |
R858-859.7 Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? magnetic resonance imaging muscle perfusion permeability prostate cancer |
topic |
misc R858-859.7 misc magnetic resonance imaging misc muscle misc perfusion misc permeability misc prostate cancer misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc magnetic resonance imaging misc muscle misc perfusion misc permeability misc prostate cancer misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc magnetic resonance imaging misc muscle misc perfusion misc permeability misc prostate cancer misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tomography |
hierarchy_parent_id |
859892174 |
hierarchy_top_title |
Tomography |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)859892174 (DE-600)2857000-5 |
title |
Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
ctrlnum |
(DE-627)DOAJ078816149 (DE-599)DOAJ4d3084c2eeb0477791b296731e44362f |
title_full |
Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
author_sort |
Silva Guljaš |
journal |
Tomography |
journalStr |
Tomography |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1509 |
author_browse |
Silva Guljaš Mirta Benšić Zdravka Krivdić Dupan Oliver Pavlović Vinko Krajina Deni Pavoković Petra Šmit Takač Matija Hranić Tamer Salha |
container_volume |
8 |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Silva Guljaš |
doi_str_mv |
10.3390/tomography8030124 |
author2-role |
verfasserin |
title_sort |
dynamic contrast enhanced study in multiparametric examination of the prostate—can we make better use of it? |
callnumber |
R858-859.7 |
title_auth |
Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
abstract |
We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. |
abstractGer |
We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. |
abstract_unstemmed |
We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It? |
url |
https://doi.org/10.3390/tomography8030124 https://doaj.org/article/4d3084c2eeb0477791b296731e44362f https://www.mdpi.com/2379-139X/8/3/124 https://doaj.org/toc/2379-1381 https://doaj.org/toc/2379-139X |
remote_bool |
true |
author2 |
Mirta Benšić Zdravka Krivdić Dupan Oliver Pavlović Vinko Krajina Deni Pavoković Petra Šmit Takač Matija Hranić Tamer Salha |
author2Str |
Mirta Benšić Zdravka Krivdić Dupan Oliver Pavlović Vinko Krajina Deni Pavoković Petra Šmit Takač Matija Hranić Tamer Salha |
ppnlink |
859892174 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/tomography8030124 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T20:01:51.093Z |
_version_ |
1803589424088350720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ078816149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414211915.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/tomography8030124</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078816149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4d3084c2eeb0477791b296731e44362f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Silva Guljaš</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Contrast Enhanced Study in Multiparametric Examination of the Prostate—Can We Make Better Use of It?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We sought to investigate whether quantitative parameters from a dynamic contrast-enhanced study can be used to differentiate cancer from normal tissue and to determine a cut-off value of specific parameters that can predict malignancy more accurately, compared to the obturator internus muscle as a reference tissue. This retrospective study included 56 patients with biopsy proven prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI), with a total of 70 lesions; 39 were located in the peripheral zone, and 31 in the transition zone. The quantitative parameters for all patients were calculated in the detected lesion, morphologically normal prostate tissue and the obturator internus muscle. Increase in the K<sub<trans</sub< value was determined in lesion-to-muscle ratio by 3.974368, which is a cut-off value to differentiate between prostate cancer and normal prostate tissue, with specificity of 72.86% and sensitivity of 91.43%. We introduced a model to detect prostate cancer that combines K<sub<trans</sub< lesion-to-muscle ratio value and iAUC lesion-to-muscle ratio value, which is of higher accuracy compared to individual variables. Based on this model, we identified the optimal cut-off value with 100% sensitivity and 64.28% specificity. The use of quantitative DCE pharmacokinetic parameters compared to the obturator internus muscle as reference tissue leads to higher diagnostic accuracy for prostate cancer detection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">muscle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perfusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirta Benšić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zdravka Krivdić Dupan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Oliver Pavlović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vinko Krajina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Deni Pavoković</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petra Šmit Takač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matija Hranić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tamer Salha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Tomography</subfield><subfield code="d">MDPI AG, 2021</subfield><subfield code="g">8(2022), 3, Seite 1509-1521</subfield><subfield code="w">(DE-627)859892174</subfield><subfield code="w">(DE-600)2857000-5</subfield><subfield code="x">2379139X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1509-1521</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/tomography8030124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4d3084c2eeb0477791b296731e44362f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2379-139X/8/3/124</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-1381</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2379-139X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="h">1509-1521</subfield></datafield></record></collection>
|
score |
7.4024687 |