High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors
Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance...
Ausführliche Beschreibung
Autor*in: |
Yuanyuan Jiang [verfasserIn] Xiaozhang Zhu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Organic Materials - Georg Thieme Verlag, 2020, 03(2021), 02, Seite 254-276 |
---|---|
Übergeordnetes Werk: |
volume:03 ; year:2021 ; number:02 ; pages:254-276 |
Links: |
---|
DOI / URN: |
10.1055/a-1472-3989 |
---|
Katalog-ID: |
DOAJ078992494 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ078992494 | ||
003 | DE-627 | ||
005 | 20230307012453.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1055/a-1472-3989 |2 doi | |
035 | |a (DE-627)DOAJ078992494 | ||
035 | |a (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yuanyuan Jiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. | ||
650 | 4 | |a ternary organic solar cells | |
650 | 4 | |a fullerene acceptors | |
650 | 4 | |a non-fullerene acceptors | |
650 | 4 | |a power conversion efficiency | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Xiaozhang Zhu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Organic Materials |d Georg Thieme Verlag, 2020 |g 03(2021), 02, Seite 254-276 |w (DE-627)1025171098 |x 26251825 |7 nnns |
773 | 1 | 8 | |g volume:03 |g year:2021 |g number:02 |g pages:254-276 |
856 | 4 | 0 | |u https://doi.org/10.1055/a-1472-3989 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 |z kostenfrei |
856 | 4 | 0 | |u http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2625-1825 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 03 |j 2021 |e 02 |h 254-276 |
author_variant |
y j yj x z xz |
---|---|
matchkey_str |
article:26251825:2021----::ihefractrayraislrelealdyyegznfleee |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QD |
publishDate |
2021 |
allfields |
10.1055/a-1472-3989 doi (DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 DE-627 ger DE-627 rakwb eng QD1-999 Yuanyuan Jiang verfasserin aut High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry Xiaozhang Zhu verfasserin aut In Organic Materials Georg Thieme Verlag, 2020 03(2021), 02, Seite 254-276 (DE-627)1025171098 26251825 nnns volume:03 year:2021 number:02 pages:254-276 https://doi.org/10.1055/a-1472-3989 kostenfrei https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 kostenfrei http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 kostenfrei https://doaj.org/toc/2625-1825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 03 2021 02 254-276 |
spelling |
10.1055/a-1472-3989 doi (DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 DE-627 ger DE-627 rakwb eng QD1-999 Yuanyuan Jiang verfasserin aut High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry Xiaozhang Zhu verfasserin aut In Organic Materials Georg Thieme Verlag, 2020 03(2021), 02, Seite 254-276 (DE-627)1025171098 26251825 nnns volume:03 year:2021 number:02 pages:254-276 https://doi.org/10.1055/a-1472-3989 kostenfrei https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 kostenfrei http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 kostenfrei https://doaj.org/toc/2625-1825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 03 2021 02 254-276 |
allfields_unstemmed |
10.1055/a-1472-3989 doi (DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 DE-627 ger DE-627 rakwb eng QD1-999 Yuanyuan Jiang verfasserin aut High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry Xiaozhang Zhu verfasserin aut In Organic Materials Georg Thieme Verlag, 2020 03(2021), 02, Seite 254-276 (DE-627)1025171098 26251825 nnns volume:03 year:2021 number:02 pages:254-276 https://doi.org/10.1055/a-1472-3989 kostenfrei https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 kostenfrei http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 kostenfrei https://doaj.org/toc/2625-1825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 03 2021 02 254-276 |
allfieldsGer |
10.1055/a-1472-3989 doi (DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 DE-627 ger DE-627 rakwb eng QD1-999 Yuanyuan Jiang verfasserin aut High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry Xiaozhang Zhu verfasserin aut In Organic Materials Georg Thieme Verlag, 2020 03(2021), 02, Seite 254-276 (DE-627)1025171098 26251825 nnns volume:03 year:2021 number:02 pages:254-276 https://doi.org/10.1055/a-1472-3989 kostenfrei https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 kostenfrei http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 kostenfrei https://doaj.org/toc/2625-1825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 03 2021 02 254-276 |
allfieldsSound |
10.1055/a-1472-3989 doi (DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 DE-627 ger DE-627 rakwb eng QD1-999 Yuanyuan Jiang verfasserin aut High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry Xiaozhang Zhu verfasserin aut In Organic Materials Georg Thieme Verlag, 2020 03(2021), 02, Seite 254-276 (DE-627)1025171098 26251825 nnns volume:03 year:2021 number:02 pages:254-276 https://doi.org/10.1055/a-1472-3989 kostenfrei https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 kostenfrei http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 kostenfrei https://doaj.org/toc/2625-1825 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 03 2021 02 254-276 |
language |
English |
source |
In Organic Materials 03(2021), 02, Seite 254-276 volume:03 year:2021 number:02 pages:254-276 |
sourceStr |
In Organic Materials 03(2021), 02, Seite 254-276 volume:03 year:2021 number:02 pages:254-276 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency Chemistry |
isfreeaccess_bool |
true |
container_title |
Organic Materials |
authorswithroles_txt_mv |
Yuanyuan Jiang @@aut@@ Xiaozhang Zhu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1025171098 |
id |
DOAJ078992494 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ078992494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307012453.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1055/a-1472-3989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078992494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuanyuan Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ternary organic solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fullerene acceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-fullerene acceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power conversion efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaozhang Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Organic Materials</subfield><subfield code="d">Georg Thieme Verlag, 2020</subfield><subfield code="g">03(2021), 02, Seite 254-276</subfield><subfield code="w">(DE-627)1025171098</subfield><subfield code="x">26251825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:03</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:02</subfield><subfield code="g">pages:254-276</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1055/a-1472-3989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2625-1825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">03</subfield><subfield code="j">2021</subfield><subfield code="e">02</subfield><subfield code="h">254-276</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yuanyuan Jiang |
spellingShingle |
Yuanyuan Jiang misc QD1-999 misc ternary organic solar cells misc fullerene acceptors misc non-fullerene acceptors misc power conversion efficiency misc Chemistry High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
authorStr |
Yuanyuan Jiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1025171098 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
26251825 |
topic_title |
QD1-999 High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors ternary organic solar cells fullerene acceptors non-fullerene acceptors power conversion efficiency |
topic |
misc QD1-999 misc ternary organic solar cells misc fullerene acceptors misc non-fullerene acceptors misc power conversion efficiency misc Chemistry |
topic_unstemmed |
misc QD1-999 misc ternary organic solar cells misc fullerene acceptors misc non-fullerene acceptors misc power conversion efficiency misc Chemistry |
topic_browse |
misc QD1-999 misc ternary organic solar cells misc fullerene acceptors misc non-fullerene acceptors misc power conversion efficiency misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Organic Materials |
hierarchy_parent_id |
1025171098 |
hierarchy_top_title |
Organic Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1025171098 |
title |
High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
ctrlnum |
(DE-627)DOAJ078992494 (DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454 |
title_full |
High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
author_sort |
Yuanyuan Jiang |
journal |
Organic Materials |
journalStr |
Organic Materials |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
254 |
author_browse |
Yuanyuan Jiang Xiaozhang Zhu |
container_volume |
03 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuanyuan Jiang |
doi_str_mv |
10.1055/a-1472-3989 |
author2-role |
verfasserin |
title_sort |
high-performance ternary organic solar cells enabled by synergizing fullerene and non-fullerene acceptors |
callnumber |
QD1-999 |
title_auth |
High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
abstract |
Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. |
abstractGer |
Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. |
abstract_unstemmed |
Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
02 |
title_short |
High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors |
url |
https://doi.org/10.1055/a-1472-3989 https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454 http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989 https://doaj.org/toc/2625-1825 |
remote_bool |
true |
author2 |
Xiaozhang Zhu |
author2Str |
Xiaozhang Zhu |
ppnlink |
1025171098 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1055/a-1472-3989 |
callnumber-a |
QD1-999 |
up_date |
2024-07-03T21:04:48.614Z |
_version_ |
1803593385106210817 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ078992494</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307012453.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1055/a-1472-3989</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ078992494</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8d43fb6ab69e41e8b554e0d86c585454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuanyuan Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-Performance Ternary Organic Solar Cells Enabled by Synergizing Fullerene and Non-fullerene Acceptors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the development of the non-fullerene acceptors (NFAs), the use of ternary organic photovoltaic devices based on a fullerene acceptor and a NFA is now widespread, and the merits of both acceptor types can be fully utilized. However, the effective approach of enhancing device performance is adjusting the charge dynamics and the thin-film morphology of the active layer via introducing the second acceptor, which would significantly impact the open-circuit voltage, the short-circuit current, and the fill factor, thus strongly affecting device efficiency. The functions of the second acceptor in a ternary organic solar cell with a fullerene acceptor and a NFA are summarized here. These include a broader absorption spectrum; formation of a cascade energy level or energy transfer; modified thin-film morphology including phase separation, effects on crystallinity, size, and purity of domain; and vertical distribution along with improved charge dynamics like exciton dissociation and charge transport, collection, and recombination. Then, we discuss the hierarchical morphology in ternary solar cells, which may benefit device performance, and the outlook of the ternary device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ternary organic solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fullerene acceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-fullerene acceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power conversion efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaozhang Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Organic Materials</subfield><subfield code="d">Georg Thieme Verlag, 2020</subfield><subfield code="g">03(2021), 02, Seite 254-276</subfield><subfield code="w">(DE-627)1025171098</subfield><subfield code="x">26251825</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:03</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:02</subfield><subfield code="g">pages:254-276</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1055/a-1472-3989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8d43fb6ab69e41e8b554e0d86c585454</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-3989</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2625-1825</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">03</subfield><subfield code="j">2021</subfield><subfield code="e">02</subfield><subfield code="h">254-276</subfield></datafield></record></collection>
|
score |
7.400259 |