Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks
Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amou...
Ausführliche Beschreibung
Autor*in: |
Ruyan Wang [verfasserIn] Liuwei Tang [verfasserIn] Tong Tang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 20(2020), 23, p 6754 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2020 ; number:23, p 6754 |
Links: |
---|
DOI / URN: |
10.3390/s20236754 |
---|
Katalog-ID: |
DOAJ079176690 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079176690 | ||
003 | DE-627 | ||
005 | 20240412210528.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s20236754 |2 doi | |
035 | |a (DE-627)DOAJ079176690 | ||
035 | |a (DE-599)DOAJ9b5033e5214249239593ae96969151e4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Ruyan Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. | ||
650 | 4 | |a visual sensor networks | |
650 | 4 | |a versatile video coding | |
650 | 4 | |a sample adaptive offset | |
650 | 4 | |a edge offset | |
650 | 4 | |a depth | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Liuwei Tang |e verfasserin |4 aut | |
700 | 0 | |a Tong Tang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 20(2020), 23, p 6754 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2020 |g number:23, p 6754 |
856 | 4 | 0 | |u https://doi.org/10.3390/s20236754 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9b5033e5214249239593ae96969151e4 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/20/23/6754 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2020 |e 23, p 6754 |
author_variant |
r w rw l t lt t t tt |
---|---|
matchkey_str |
article:14248220:2020----::atapedpiefstonlbsdnofaueadetifrainov |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TP |
publishDate |
2020 |
allfields |
10.3390/s20236754 doi (DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 DE-627 ger DE-627 rakwb eng TP1-1185 Ruyan Wang verfasserin aut Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology Liuwei Tang verfasserin aut Tong Tang verfasserin aut In Sensors MDPI AG, 2003 20(2020), 23, p 6754 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:23, p 6754 https://doi.org/10.3390/s20236754 kostenfrei https://doaj.org/article/9b5033e5214249239593ae96969151e4 kostenfrei https://www.mdpi.com/1424-8220/20/23/6754 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 23, p 6754 |
spelling |
10.3390/s20236754 doi (DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 DE-627 ger DE-627 rakwb eng TP1-1185 Ruyan Wang verfasserin aut Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology Liuwei Tang verfasserin aut Tong Tang verfasserin aut In Sensors MDPI AG, 2003 20(2020), 23, p 6754 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:23, p 6754 https://doi.org/10.3390/s20236754 kostenfrei https://doaj.org/article/9b5033e5214249239593ae96969151e4 kostenfrei https://www.mdpi.com/1424-8220/20/23/6754 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 23, p 6754 |
allfields_unstemmed |
10.3390/s20236754 doi (DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 DE-627 ger DE-627 rakwb eng TP1-1185 Ruyan Wang verfasserin aut Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology Liuwei Tang verfasserin aut Tong Tang verfasserin aut In Sensors MDPI AG, 2003 20(2020), 23, p 6754 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:23, p 6754 https://doi.org/10.3390/s20236754 kostenfrei https://doaj.org/article/9b5033e5214249239593ae96969151e4 kostenfrei https://www.mdpi.com/1424-8220/20/23/6754 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 23, p 6754 |
allfieldsGer |
10.3390/s20236754 doi (DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 DE-627 ger DE-627 rakwb eng TP1-1185 Ruyan Wang verfasserin aut Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology Liuwei Tang verfasserin aut Tong Tang verfasserin aut In Sensors MDPI AG, 2003 20(2020), 23, p 6754 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:23, p 6754 https://doi.org/10.3390/s20236754 kostenfrei https://doaj.org/article/9b5033e5214249239593ae96969151e4 kostenfrei https://www.mdpi.com/1424-8220/20/23/6754 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 23, p 6754 |
allfieldsSound |
10.3390/s20236754 doi (DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 DE-627 ger DE-627 rakwb eng TP1-1185 Ruyan Wang verfasserin aut Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology Liuwei Tang verfasserin aut Tong Tang verfasserin aut In Sensors MDPI AG, 2003 20(2020), 23, p 6754 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:20 year:2020 number:23, p 6754 https://doi.org/10.3390/s20236754 kostenfrei https://doaj.org/article/9b5033e5214249239593ae96969151e4 kostenfrei https://www.mdpi.com/1424-8220/20/23/6754 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2020 23, p 6754 |
language |
English |
source |
In Sensors 20(2020), 23, p 6754 volume:20 year:2020 number:23, p 6754 |
sourceStr |
In Sensors 20(2020), 23, p 6754 volume:20 year:2020 number:23, p 6754 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
visual sensor networks versatile video coding sample adaptive offset edge offset depth Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Ruyan Wang @@aut@@ Liuwei Tang @@aut@@ Tong Tang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ079176690 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079176690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20236754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079176690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9b5033e5214249239593ae96969151e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">versatile video coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample adaptive offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">depth</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liuwei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 23, p 6754</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:23, p 6754</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20236754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9b5033e5214249239593ae96969151e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/23/6754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">23, p 6754</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ruyan Wang |
spellingShingle |
Ruyan Wang misc TP1-1185 misc visual sensor networks misc versatile video coding misc sample adaptive offset misc edge offset misc depth misc Chemical technology Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
authorStr |
Ruyan Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks visual sensor networks versatile video coding sample adaptive offset edge offset depth |
topic |
misc TP1-1185 misc visual sensor networks misc versatile video coding misc sample adaptive offset misc edge offset misc depth misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc visual sensor networks misc versatile video coding misc sample adaptive offset misc edge offset misc depth misc Chemical technology |
topic_browse |
misc TP1-1185 misc visual sensor networks misc versatile video coding misc sample adaptive offset misc edge offset misc depth misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
ctrlnum |
(DE-627)DOAJ079176690 (DE-599)DOAJ9b5033e5214249239593ae96969151e4 |
title_full |
Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
author_sort |
Ruyan Wang |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Ruyan Wang Liuwei Tang Tong Tang |
container_volume |
20 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Ruyan Wang |
doi_str_mv |
10.3390/s20236754 |
author2-role |
verfasserin |
title_sort |
fast sample adaptive offset jointly based on hog features and depth information for vvc in visual sensor networks |
callnumber |
TP1-1185 |
title_auth |
Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
abstract |
Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. |
abstractGer |
Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. |
abstract_unstemmed |
Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
23, p 6754 |
title_short |
Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks |
url |
https://doi.org/10.3390/s20236754 https://doaj.org/article/9b5033e5214249239593ae96969151e4 https://www.mdpi.com/1424-8220/20/23/6754 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Liuwei Tang Tong Tang |
author2Str |
Liuwei Tang Tong Tang |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s20236754 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T22:06:53.112Z |
_version_ |
1803597290529619968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079176690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412210528.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s20236754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079176690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9b5033e5214249239593ae96969151e4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ruyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Sample Adaptive Offset Jointly Based on HOG Features and Depth Information for VVC in Visual Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring, network camera, industrial detection, and other fields. However, with the development of new communication technology and the increase of the number of camera nodes in VSN, transmitting and compressing the huge amounts of video and image data generated by video and image sensors has become a major challenge. The next-generation video coding standard—versatile video coding (VVC), can effectively compress the visual data, but the higher compression rate is at the cost of heavy computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by jointly considering the histogram of oriented gradient (HOG) features and the depth information for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is simplified by using HOG features and support vector machine (SVM). Finally, experimental results show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52% BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0) for VSNs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual sensor networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">versatile video coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sample adaptive offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">depth</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liuwei Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tong Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">20(2020), 23, p 6754</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:23, p 6754</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s20236754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9b5033e5214249239593ae96969151e4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/20/23/6754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2020</subfield><subfield code="e">23, p 6754</subfield></datafield></record></collection>
|
score |
7.4002275 |