Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units
Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial r...
Ausführliche Beschreibung
Autor*in: |
Luis Lopes Chambino [verfasserIn] José Silvestre Silva [verfasserIn] Alexandre Bernardino [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 21(2021), 13, p 4520 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2021 ; number:13, p 4520 |
Links: |
---|
DOI / URN: |
10.3390/s21134520 |
---|
Katalog-ID: |
DOAJ079184677 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079184677 | ||
003 | DE-627 | ||
005 | 20240412170624.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s21134520 |2 doi | |
035 | |a (DE-627)DOAJ079184677 | ||
035 | |a (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Luis Lopes Chambino |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. | ||
650 | 4 | |a facial recognition | |
650 | 4 | |a multispectral images | |
650 | 4 | |a infrared | |
650 | 4 | |a presentation attack detector | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a José Silvestre Silva |e verfasserin |4 aut | |
700 | 0 | |a Alexandre Bernardino |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 21(2021), 13, p 4520 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2021 |g number:13, p 4520 |
856 | 4 | 0 | |u https://doi.org/10.3390/s21134520 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/21/13/4520 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2021 |e 13, p 4520 |
author_variant |
l l c llc j s s jss a b ab |
---|---|
matchkey_str |
article:14248220:2021----::utsetafcrcgiinsntaselannwtaatto |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TP |
publishDate |
2021 |
allfields |
10.3390/s21134520 doi (DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 DE-627 ger DE-627 rakwb eng TP1-1185 Luis Lopes Chambino verfasserin aut Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. facial recognition multispectral images infrared presentation attack detector Chemical technology José Silvestre Silva verfasserin aut Alexandre Bernardino verfasserin aut In Sensors MDPI AG, 2003 21(2021), 13, p 4520 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:21 year:2021 number:13, p 4520 https://doi.org/10.3390/s21134520 kostenfrei https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 kostenfrei https://www.mdpi.com/1424-8220/21/13/4520 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 13, p 4520 |
spelling |
10.3390/s21134520 doi (DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 DE-627 ger DE-627 rakwb eng TP1-1185 Luis Lopes Chambino verfasserin aut Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. facial recognition multispectral images infrared presentation attack detector Chemical technology José Silvestre Silva verfasserin aut Alexandre Bernardino verfasserin aut In Sensors MDPI AG, 2003 21(2021), 13, p 4520 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:21 year:2021 number:13, p 4520 https://doi.org/10.3390/s21134520 kostenfrei https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 kostenfrei https://www.mdpi.com/1424-8220/21/13/4520 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 13, p 4520 |
allfields_unstemmed |
10.3390/s21134520 doi (DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 DE-627 ger DE-627 rakwb eng TP1-1185 Luis Lopes Chambino verfasserin aut Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. facial recognition multispectral images infrared presentation attack detector Chemical technology José Silvestre Silva verfasserin aut Alexandre Bernardino verfasserin aut In Sensors MDPI AG, 2003 21(2021), 13, p 4520 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:21 year:2021 number:13, p 4520 https://doi.org/10.3390/s21134520 kostenfrei https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 kostenfrei https://www.mdpi.com/1424-8220/21/13/4520 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 13, p 4520 |
allfieldsGer |
10.3390/s21134520 doi (DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 DE-627 ger DE-627 rakwb eng TP1-1185 Luis Lopes Chambino verfasserin aut Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. facial recognition multispectral images infrared presentation attack detector Chemical technology José Silvestre Silva verfasserin aut Alexandre Bernardino verfasserin aut In Sensors MDPI AG, 2003 21(2021), 13, p 4520 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:21 year:2021 number:13, p 4520 https://doi.org/10.3390/s21134520 kostenfrei https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 kostenfrei https://www.mdpi.com/1424-8220/21/13/4520 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 13, p 4520 |
allfieldsSound |
10.3390/s21134520 doi (DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 DE-627 ger DE-627 rakwb eng TP1-1185 Luis Lopes Chambino verfasserin aut Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. facial recognition multispectral images infrared presentation attack detector Chemical technology José Silvestre Silva verfasserin aut Alexandre Bernardino verfasserin aut In Sensors MDPI AG, 2003 21(2021), 13, p 4520 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:21 year:2021 number:13, p 4520 https://doi.org/10.3390/s21134520 kostenfrei https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 kostenfrei https://www.mdpi.com/1424-8220/21/13/4520 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 13, p 4520 |
language |
English |
source |
In Sensors 21(2021), 13, p 4520 volume:21 year:2021 number:13, p 4520 |
sourceStr |
In Sensors 21(2021), 13, p 4520 volume:21 year:2021 number:13, p 4520 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
facial recognition multispectral images infrared presentation attack detector Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Luis Lopes Chambino @@aut@@ José Silvestre Silva @@aut@@ Alexandre Bernardino @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ079184677 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079184677</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s21134520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079184677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis Lopes Chambino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">facial recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">presentation attack detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Silvestre Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexandre Bernardino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">21(2021), 13, p 4520</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:13, p 4520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s21134520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/21/13/4520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">13, p 4520</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Luis Lopes Chambino |
spellingShingle |
Luis Lopes Chambino misc TP1-1185 misc facial recognition misc multispectral images misc infrared misc presentation attack detector misc Chemical technology Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
authorStr |
Luis Lopes Chambino |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units facial recognition multispectral images infrared presentation attack detector |
topic |
misc TP1-1185 misc facial recognition misc multispectral images misc infrared misc presentation attack detector misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc facial recognition misc multispectral images misc infrared misc presentation attack detector misc Chemical technology |
topic_browse |
misc TP1-1185 misc facial recognition misc multispectral images misc infrared misc presentation attack detector misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
ctrlnum |
(DE-627)DOAJ079184677 (DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6 |
title_full |
Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
author_sort |
Luis Lopes Chambino |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Luis Lopes Chambino José Silvestre Silva Alexandre Bernardino |
container_volume |
21 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Luis Lopes Chambino |
doi_str_mv |
10.3390/s21134520 |
author2-role |
verfasserin |
title_sort |
multispectral face recognition using transfer learning with adaptation of domain specific units |
callnumber |
TP1-1185 |
title_auth |
Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
abstract |
Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. |
abstractGer |
Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. |
abstract_unstemmed |
Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
13, p 4520 |
title_short |
Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units |
url |
https://doi.org/10.3390/s21134520 https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6 https://www.mdpi.com/1424-8220/21/13/4520 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
José Silvestre Silva Alexandre Bernardino |
author2Str |
José Silvestre Silva Alexandre Bernardino |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s21134520 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T22:09:19.877Z |
_version_ |
1803597444421779456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079184677</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170624.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s21134520</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079184677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4048cc5ededd44809fd86e7779ddeba6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Luis Lopes Chambino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multispectral Face Recognition Using Transfer Learning with Adaptation of Domain Specific Units</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Facial recognition is a method of identifying or authenticating the identity of people through their faces. Nowadays, facial recognition systems that use multispectral images achieve better results than those that use only visible spectral band images. In this work, a novel architecture for facial recognition that uses multiple deep convolutional neural networks and multispectral images is proposed. A domain-specific transfer-learning methodology applied to a deep neural network pre-trained in RGB images is shown to generalize well to the multispectral domain. We also propose a skin detector module for forgery detection. Several experiments were planned to assess the performance of our methods. First, we evaluate the performance of the forgery detection module using face masks and coverings of different materials. A second study was carried out with the objective of tuning the parameters of our domain-specific transfer-learning methodology, in particular which layers of the pre-trained network should be retrained to obtain good adaptation to multispectral images. A third study was conducted to evaluate the performance of support vector machines (SVM) and k-nearest neighbor classifiers using the embeddings obtained from the trained neural network. Finally, we compare the proposed method with other state-of-the-art approaches. The experimental results show performance improvements in the Tufts and CASIA NIR-VIS 2.0 multispectral databases, with a rank-1 score of 99.7% and 99.8%, respectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">facial recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multispectral images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">presentation attack detector</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">José Silvestre Silva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexandre Bernardino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">21(2021), 13, p 4520</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:13, p 4520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s21134520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4048cc5ededd44809fd86e7779ddeba6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/21/13/4520</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">13, p 4520</subfield></datafield></record></collection>
|
score |
7.403063 |