QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization
In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different h...
Ausführliche Beschreibung
Autor*in: |
Ada Fort [verfasserIn] Anna Lo Grasso [verfasserIn] Marco Mugnaini [verfasserIn] Enza Panzardi [verfasserIn] Lorenzo Parri [verfasserIn] Valerio Vignoli [verfasserIn] Cecilia Viti [verfasserIn] Ammar Al-Hamry [verfasserIn] Olfa Kanoun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Chemosensors - MDPI AG, 2013, 10(2022), 8, p 320 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:8, p 320 |
Links: |
---|
DOI / URN: |
10.3390/chemosensors10080320 |
---|
Katalog-ID: |
DOAJ079234259 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079234259 | ||
003 | DE-627 | ||
005 | 20240414112706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/chemosensors10080320 |2 doi | |
035 | |a (DE-627)DOAJ079234259 | ||
035 | |a (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD415-436 | |
100 | 0 | |a Ada Fort |e verfasserin |4 aut | |
245 | 1 | 0 | |a QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. | ||
650 | 4 | |a QCM | |
650 | 4 | |a humidity sensors | |
650 | 4 | |a CNT water absorption | |
650 | 4 | |a CNT-based humidity sensors | |
650 | 4 | |a QCM humidity | |
650 | 4 | |a carbon-based sensing film | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Anna Lo Grasso |e verfasserin |4 aut | |
700 | 0 | |a Marco Mugnaini |e verfasserin |4 aut | |
700 | 0 | |a Enza Panzardi |e verfasserin |4 aut | |
700 | 0 | |a Lorenzo Parri |e verfasserin |4 aut | |
700 | 0 | |a Valerio Vignoli |e verfasserin |4 aut | |
700 | 0 | |a Cecilia Viti |e verfasserin |4 aut | |
700 | 0 | |a Ammar Al-Hamry |e verfasserin |4 aut | |
700 | 0 | |a Olfa Kanoun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Chemosensors |d MDPI AG, 2013 |g 10(2022), 8, p 320 |w (DE-627)737287594 |w (DE-600)2704218-2 |x 22279040 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:8, p 320 |
856 | 4 | 0 | |u https://doi.org/10.3390/chemosensors10080320 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9040/10/8/320 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9040 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 8, p 320 |
author_variant |
a f af a l g alg m m mm e p ep l p lp v v vv c v cv a a h aah o k ok |
---|---|
matchkey_str |
article:22279040:2022----::cmaueetorwtnnsrcuecrobsdaeilpr2xe |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/chemosensors10080320 doi (DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 DE-627 ger DE-627 rakwb eng QD415-436 Ada Fort verfasserin aut QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry Anna Lo Grasso verfasserin aut Marco Mugnaini verfasserin aut Enza Panzardi verfasserin aut Lorenzo Parri verfasserin aut Valerio Vignoli verfasserin aut Cecilia Viti verfasserin aut Ammar Al-Hamry verfasserin aut Olfa Kanoun verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 8, p 320 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:8, p 320 https://doi.org/10.3390/chemosensors10080320 kostenfrei https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 kostenfrei https://www.mdpi.com/2227-9040/10/8/320 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 8, p 320 |
spelling |
10.3390/chemosensors10080320 doi (DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 DE-627 ger DE-627 rakwb eng QD415-436 Ada Fort verfasserin aut QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry Anna Lo Grasso verfasserin aut Marco Mugnaini verfasserin aut Enza Panzardi verfasserin aut Lorenzo Parri verfasserin aut Valerio Vignoli verfasserin aut Cecilia Viti verfasserin aut Ammar Al-Hamry verfasserin aut Olfa Kanoun verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 8, p 320 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:8, p 320 https://doi.org/10.3390/chemosensors10080320 kostenfrei https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 kostenfrei https://www.mdpi.com/2227-9040/10/8/320 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 8, p 320 |
allfields_unstemmed |
10.3390/chemosensors10080320 doi (DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 DE-627 ger DE-627 rakwb eng QD415-436 Ada Fort verfasserin aut QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry Anna Lo Grasso verfasserin aut Marco Mugnaini verfasserin aut Enza Panzardi verfasserin aut Lorenzo Parri verfasserin aut Valerio Vignoli verfasserin aut Cecilia Viti verfasserin aut Ammar Al-Hamry verfasserin aut Olfa Kanoun verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 8, p 320 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:8, p 320 https://doi.org/10.3390/chemosensors10080320 kostenfrei https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 kostenfrei https://www.mdpi.com/2227-9040/10/8/320 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 8, p 320 |
allfieldsGer |
10.3390/chemosensors10080320 doi (DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 DE-627 ger DE-627 rakwb eng QD415-436 Ada Fort verfasserin aut QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry Anna Lo Grasso verfasserin aut Marco Mugnaini verfasserin aut Enza Panzardi verfasserin aut Lorenzo Parri verfasserin aut Valerio Vignoli verfasserin aut Cecilia Viti verfasserin aut Ammar Al-Hamry verfasserin aut Olfa Kanoun verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 8, p 320 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:8, p 320 https://doi.org/10.3390/chemosensors10080320 kostenfrei https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 kostenfrei https://www.mdpi.com/2227-9040/10/8/320 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 8, p 320 |
allfieldsSound |
10.3390/chemosensors10080320 doi (DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 DE-627 ger DE-627 rakwb eng QD415-436 Ada Fort verfasserin aut QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry Anna Lo Grasso verfasserin aut Marco Mugnaini verfasserin aut Enza Panzardi verfasserin aut Lorenzo Parri verfasserin aut Valerio Vignoli verfasserin aut Cecilia Viti verfasserin aut Ammar Al-Hamry verfasserin aut Olfa Kanoun verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 8, p 320 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:8, p 320 https://doi.org/10.3390/chemosensors10080320 kostenfrei https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 kostenfrei https://www.mdpi.com/2227-9040/10/8/320 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 8, p 320 |
language |
English |
source |
In Chemosensors 10(2022), 8, p 320 volume:10 year:2022 number:8, p 320 |
sourceStr |
In Chemosensors 10(2022), 8, p 320 volume:10 year:2022 number:8, p 320 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film Biochemistry |
isfreeaccess_bool |
true |
container_title |
Chemosensors |
authorswithroles_txt_mv |
Ada Fort @@aut@@ Anna Lo Grasso @@aut@@ Marco Mugnaini @@aut@@ Enza Panzardi @@aut@@ Lorenzo Parri @@aut@@ Valerio Vignoli @@aut@@ Cecilia Viti @@aut@@ Ammar Al-Hamry @@aut@@ Olfa Kanoun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287594 |
id |
DOAJ079234259 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079234259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414112706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10080320</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079234259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ada Fort</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">humidity sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT water absorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT-based humidity sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCM humidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon-based sensing film</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Lo Grasso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Mugnaini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enza Panzardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lorenzo Parri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Vignoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Viti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ammar Al-Hamry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olfa Kanoun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 8, p 320</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 320</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10080320</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/8/320</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 320</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Ada Fort |
spellingShingle |
Ada Fort misc QD415-436 misc QCM misc humidity sensors misc CNT water absorption misc CNT-based humidity sensors misc QCM humidity misc carbon-based sensing film misc Biochemistry QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
authorStr |
Ada Fort |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287594 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD415-436 |
illustrated |
Not Illustrated |
issn |
22279040 |
topic_title |
QD415-436 QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization QCM humidity sensors CNT water absorption CNT-based humidity sensors QCM humidity carbon-based sensing film |
topic |
misc QD415-436 misc QCM misc humidity sensors misc CNT water absorption misc CNT-based humidity sensors misc QCM humidity misc carbon-based sensing film misc Biochemistry |
topic_unstemmed |
misc QD415-436 misc QCM misc humidity sensors misc CNT water absorption misc CNT-based humidity sensors misc QCM humidity misc carbon-based sensing film misc Biochemistry |
topic_browse |
misc QD415-436 misc QCM misc humidity sensors misc CNT water absorption misc CNT-based humidity sensors misc QCM humidity misc carbon-based sensing film misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemosensors |
hierarchy_parent_id |
737287594 |
hierarchy_top_title |
Chemosensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287594 (DE-600)2704218-2 |
title |
QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
ctrlnum |
(DE-627)DOAJ079234259 (DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8 |
title_full |
QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
author_sort |
Ada Fort |
journal |
Chemosensors |
journalStr |
Chemosensors |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ada Fort Anna Lo Grasso Marco Mugnaini Enza Panzardi Lorenzo Parri Valerio Vignoli Cecilia Viti Ammar Al-Hamry Olfa Kanoun |
container_volume |
10 |
class |
QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Ada Fort |
doi_str_mv |
10.3390/chemosensors10080320 |
author2-role |
verfasserin |
title_sort |
qcm measurements of rh with nanostructured carbon-based materials: part 2-experimental characterization |
callnumber |
QD415-436 |
title_auth |
QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
abstract |
In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. |
abstractGer |
In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. |
abstract_unstemmed |
In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 320 |
title_short |
QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization |
url |
https://doi.org/10.3390/chemosensors10080320 https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8 https://www.mdpi.com/2227-9040/10/8/320 https://doaj.org/toc/2227-9040 |
remote_bool |
true |
author2 |
Anna Lo Grasso Marco Mugnaini Enza Panzardi Lorenzo Parri Valerio Vignoli Cecilia Viti Ammar Al-Hamry Olfa Kanoun |
author2Str |
Anna Lo Grasso Marco Mugnaini Enza Panzardi Lorenzo Parri Valerio Vignoli Cecilia Viti Ammar Al-Hamry Olfa Kanoun |
ppnlink |
737287594 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/chemosensors10080320 |
callnumber-a |
QD415-436 |
up_date |
2024-07-03T22:25:12.739Z |
_version_ |
1803598443603558401 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079234259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414112706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10080320</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079234259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd31e707d6ad745ed83e77a5f1a0388c8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ada Fort</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 2-Experimental Characterization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this series of two papers, the humidity sensing of a carbon nanotube (CNT) network-based material is transduced and studied through quartz crystal microbalance (QCM) measurements. To this aim, quartzes functionalized with different amounts of sensing material were realized, exposed to different humidity levels, and characterized. In this second paper, the experimental results are presented and discussed. The sensing mechanisms are elucidated exploiting the theory presented in the first paper of this series. The presented results show that the investigated material functionalization induces a large response of QCM to humidity in terms of resonant frequency even at low RH levels, with a sensitivity of about 12 Hz/%RH (at RH < 30% and room temperature and 10 ug of deposited SWCNT solution) and an increase in sensitivity in the high RH range typical of nanostructured film. Regarding the response in terms of motional resistance, a large response is obtained only at intermediate and high humidity levels, confirming that condensation of water in the film plays an important role in the sensing mechanism of nanostructured materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">humidity sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT water absorption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNT-based humidity sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QCM humidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon-based sensing film</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Lo Grasso</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Mugnaini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Enza Panzardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lorenzo Parri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valerio Vignoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cecilia Viti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ammar Al-Hamry</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Olfa Kanoun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 8, p 320</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8, p 320</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10080320</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d31e707d6ad745ed83e77a5f1a0388c8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/8/320</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">8, p 320</subfield></datafield></record></collection>
|
score |
7.402793 |